

FACT SHEET

Energy and Water Utilities Regulatory Authority EWURA House, 3 EWURA Street, 41104 Tambukareli, P. O. Box 2857 DODOMA, TANZANIA Tel: +255 262329002 Fax: +255 262329005 Email: info@ EWURA.go.tz Website: www. EWURA.go.tz

In the First Quarter of FY 2024/25, EWURA continued to enhance regulatory oversight for improved energy and services' quality, reliability and affordability. This was attained by refining our regulatory frameworks, and stakeholders' engagement and through monitoring the performance of service providers and enforcing laws, regulations and standards. EWURA is committed to fostering transparency, efficiency, and effectiveness to secure the sustainable provision of energy and water services.

DR. JAMES ANDILILE EWURA'S DIRECTOR GENERAL

MISSION

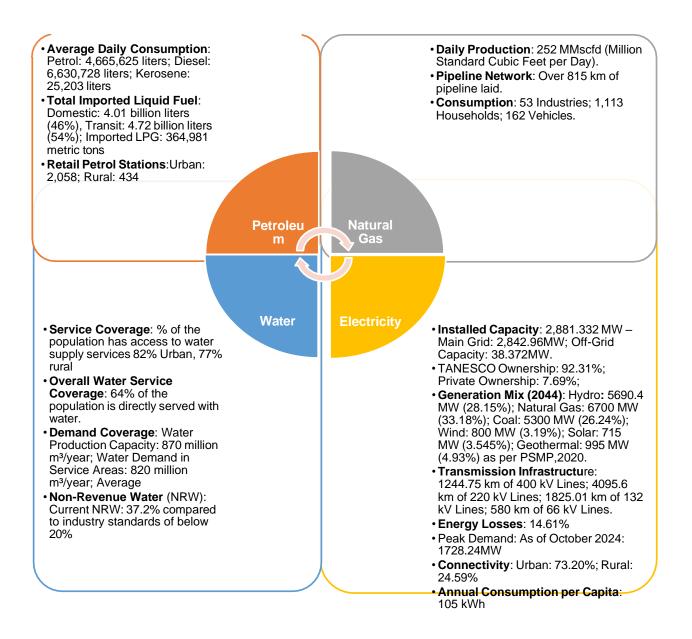
To regulate energy and water utilities in a transparent, effective, and efficient manner that ensures their quality, availability, and affordability

VISION

To be a world-class Regulator for Sustainable Energy and Water Services

TABLE OF CONTENTS

MISSION	2
VISION	2
ABBREVIATIONS AND ACRONYMS	5
KEY REGULATED SECTORS' STATISTICS	7
FOREWORD	
EWURA MANDATES	
ELECTRICITY SECTOR	
TECHNICAL REGULATION	
	-
Installed Capacity	
Installed Capacity Growth	
Energy Mix (October, 2024) Maximum Demand	
Energy Generated (GWh)	
Transmission Network	
Grid Substations	
Distribution Network	
Transmission and Distribution Network	
Customers Connected	
Energy Losses	
Electrical Installation Personnel Licence Issued as of October 2024	
Network Expansion	
ELECTRICITY TARIFF REGULATION	
Current Electricity Tariff	
Tariff Orders	
Indicative Tariffs for Large Power Projects	
Standardized Small Power Project Tariff	
REGULATORY TOOLS	
PETROLEUM SECTOR	29
EACOP PROJECT	31
TECHNICAL REGULATION	31
TYPES OF LICENSES	31
NUMBER OF LICENSEES	
SUPPLY AND CONSUMPTION	
PETROLEUM PRODUCTS INFRASTRUCTURE	
Offloading Facilities	
Terminals for Liquid Petroleum Products	
LPG and Lubricant Infrastructure	
Petroleum Transportation Infrastructure	
Petrol Stations Distribution by Zones	
Spatial Distribution of Petrol Stations in the Country Petroleum Products Supply and Consumption	
Average Stock Days Coverage	
3	


Daily Consumption of Petroleum Products in Mainland Tanzania	
OMCs Market share	
LPG Companies Market Share	
ECONOMIC REGULATION OF PETROLEUM OPERATIONS	
Domestic Petroleum Product Prices	
PETROLEUM REGULATORY TOOLS	-
NATURAL GAS SECTOR	46
TECHNICAL REGULATION	47
NATURAL GAS INFRASTRUCTURES	48
Processing Plants	
Transportation Pipeline	
Distribution Network	48
Number of Operation License	49
Natural Gas Usage	
Natural Gas Consumption per Category	
ECONOMIC REGULATION OF NATURAL GAS OPERATIONS	50
Natural Gas Tariff	50
Natural Gas Price and Savings	
Compressed Natural (CNG) Stations	51
CNG-V Conversion Workshop	
CNG Fuel System Certifiers	
Natural Gas Customers	
REGULATORY TOOLS	
WATER AND SANITATION SECTOR	55
TECHNICAL REGULATION	56
Licence Classes (September 2024)	57
National Programmes	
Performance of WSSAs in Summary by September 2024	58
Water Treatment Facilities (September 2024)	
Water Sources and Abstraction (FY 2023/24)	
Water Network and Storage Capacity (September 2024)	
Wastewater Treatment Facilities (September 2024)	
Main Water Resources Basins in Tanzania	
Sanitation Level in Mainland Tanzania	
REGULATORY TOOLS	66

ABBREVIATIONS AND ACRONYMS

AG	Arabian Gulf
AGIP	Azienda Generale Italiana Petroli
ALAF	Aluminium Africa
AMOCO	American Oil Company
BPS	Bulk Procurement System
CNG	Compressed Natural Gas
COSS	Cost of Service Study
CPI	Consumer Price Index
DARESO	Dar es Salaam and District Electric Supply Company Ltd
DAWASA	Dar es Salaam Water and Sewerage Authority
DIT	Dar es Salaam Institute of Technology
DSM	Dar es Salaam
EACOP	East African Crude Oil Pipeline
EPP	Emergency Power Producers
EWURA	Energy and Water Utilities Regulatory Authority
FOB	Free on Board
GAPCO	Gulf Africa Petroleum Corporation
GIIP	Gas Initially in Place
GJ	Gigajoule
GOT	Government of Tanzania
HFO	Heavy Fuel Oil
IPP	Independent Power Producer
KILAMCO	Kilimanjaro Ammonia Company
KOJ	Kurasini Oil Jetty
KUFPEK	Kuwait Foreign Petroleum Exploration Company
kVa	Kilovolt-Ampere
kWh	Kilowatt-Hour
LPG	Liquid Petroleum Gas
M&P	Maurel & Prom
MED	Mediterranean
MMBtu	Million British Thermal Units
MMscfd	Million Standard Cubic Feet per Day
MT	Metric Tonner

NRW	Non Revenue Water
NUWA	National Urban Water Authority
PAET	Pan African Energy Tanzania
PSMP	Power System Master Plan
PSRC	Public Service Recruitment Secretariat
SBM	Single Buoy Mooring
SPPA	Standardized Power Purchase Agreement
SPPs	Small Power Projects
SSB	Said S. Bakhresa & Co Ltd
STM	Standardized Tariff Methodology
TANESCO	Tanzania Electric Supply Company
TASAC	Tanzania Shipping Agencies Corporation
TBL	Tanzania Breweries Ltd
TCC	Tanzania Cigarette Company
TCF	Trillion Cubic Feet
TCFT	Tanzania-Chinese Textile
TPDC	Tanzania Petroleum Development Corporation
TZS	Tanzanian Shillings
UDSM	University of Dar es Salaam
VSPP	Very Small Power Producer
WD & ID	Water Development and Irrigation Department
WSDP	Water Sector Development Programme
WSSAs	Water Supply and Sanitation Authorities
ZECO	Zanzibar Electricity Corporation

KEY REGULATED SECTORS' STATISTICS

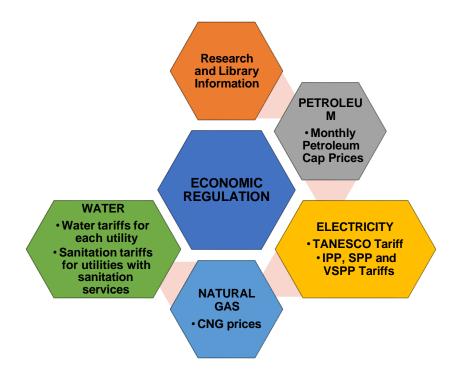
FOREWORD

The Energy and Water Utilities Regulatory Authority (EWURA) is an autonomous multi-sectoral regulatory authority established by Cap. 414 of the laws of Tanzania. It became operational in September 2006. Under Section 7 of Cap 41, EWURA is responsible for the technical and economic regulation of the energy (electricity, mid and downstream petroleum, natural gas) and water sectors in Tanzania's mainland. The Authority is charged with licensing, reviewing tariffs and charges, making rules; and monitoring performance and standards about quality, safety, health, and environment.

In discharging its function, EWURA is responsible for promoting effective competition and economic efficiency, protecting the interests of consumers, and promoting the availability of regulated services to all consumers; including low-income, rural, and disadvantaged consumers in the regulated sectors. EWURA mandates are derived from the EWURA Act, Cap. 414; the Petroleum Act, Cap. 392; Electricity Act, Cap. 131; Water Supply and Sanitation Act, Cap. 272; and Fair Competition Act, Cap. 285

This Fact Sheet chronologically provides some important information and milestones about the regulation of the energy and water sectors in Tanzania's Mainland for the period ending September 2024.

EWURA MANDATES


EWURA mandates include licensing, tariff review, monitoring performance and standards regarding quality, safety, health and environment. EWURA is also responsible for promoting effective competition and economic efficiency, protecting the interests of consumers and promoting the availability of regulated services to all consumers including low-income, rural and disadvantaged consumers in the regulated sectors.

Duties

In carrying out its functions, EWURA shall strive to enhance the welfare of Tanzania society by:

- promoting effective competition and economic efficiency;
- protecting the interests of consumers;
- protecting the financial viability of efficient suppliers;
- promoting the availability of regulated services to all consumers including low-income, rural and disadvantaged consumers;
- taking into account the need to protect and preserve the environment;
- enhancing public knowledge, awareness and understanding of the regulated sectors.

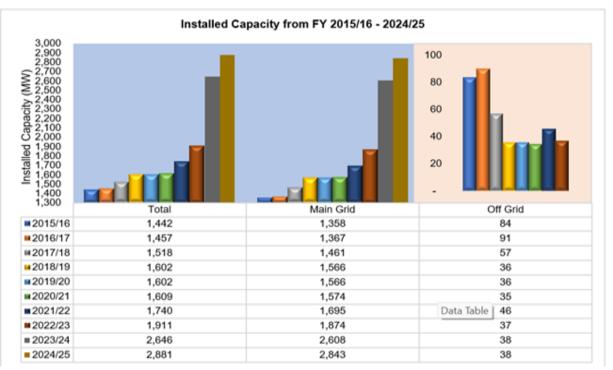
EWURA being a multi-sectoral regulator provides technical and economic regulation in electricity, petroleum, natural gas and water sub-sectors in Tanzania.

ELECTRICITY SECTOR

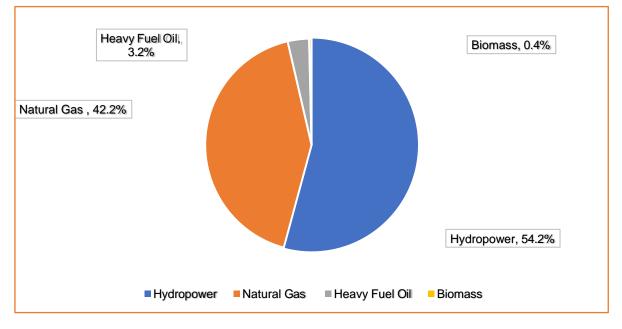
Time/Period	Milestone
1908	Germany introduced the Electricity Service in Tanganyika to serve railway workshops and part of the Dar es Salaam township.
1922	Great Britain formed the Government Electricity Department to manage the power facilities left by the Germans.
1931	The Government Electricity Department was unbundled and two companies, the Tanganyika Electric Supply Company Ltd (TANESCO) and Dar es Salaam and District Electric Supply Company Ltd (DARESCO) were incorporated under the Companies Ordinance Cap. 212.
1933	TANESCO commissioned the first diesel generator at Kange (Tanga) and later the Pangani hydropower plant (5MW) in 1936.
1957	The Electricity Ordinance Cap 131 was amended to confer the Minister for Energy with the mandate to provide policy oversight and regulation.
1964	In 1964, DARESCO and TANESCO were merged to form Tanganyika Electric Supply Company (TANESCO) which was incorporated under the Electricity Ordinance of 1964 Cap. 212.

1968	TANESCO changed its name from Tanganyika Electric Supply Company to Tanzania Electric Supply Company Limited, as it is known today.
1997	TANESCO was specified for privatization and placed under PSRC
2002 - 2006	TANESCO management was placed under the Net Group solutions to facilitate financial and technical turnaround before privatization.
2006	The Government de-specified TANESCO from privatization for the reason of being a strategically important institution.
2008	The Electricity Act was enacted to facilitate and regulate the generation, transmission, transformation, distribution, supply, and use of electricity energy, provide for cross-border trade in electricity, and the planning and regulation of rural electrification.
2008	The Government of Tanzania developed a plan for 25 years starting in 2008 entitled the Power System Master Plan (PSMP) to improve the situation.
2014	The Government approved the Electricity Supply Industry Reform Strategy and Roadmap (2014 -2025) with the view of increasing efficiency, quality services, and goods, availability of affordable power, satisfying customers, satisfying business partners, increasing transparency and competition, and reducing subsidies in the electricity subsector.

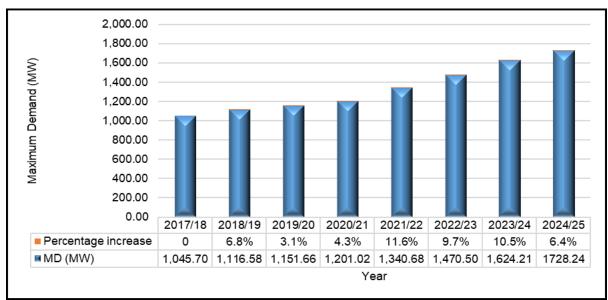
TECHNICAL REGULATION

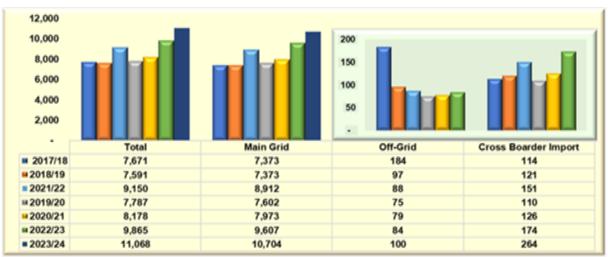

1.	Installed Capacity (MW)	2,881.332				
2.	Main grid Capacity (MW)	Main grid Capacity (MW)				
3.	Private ownership of Main grid capac	city	7.47%			
4.	TANESCO ownership of Main grid ca	apacity	92.53%%			
5.	Off-grid Capacity (MW)		38.372			
6.	Energy Losses		14.62%			
7.	Self – Generators - Own use (MW)		333.42			
8.	Electricity Connectivity - 2020	37.7%				
9.	Rural-Urban Access (%)	Urban	73.20%			
		Rural	24.59%			
10.	Population distribution (%)	Urban	35%			
		Rural	65%			
11.	Energy Consumption (%)	Residential	72.5%			
		Industry	14.4%			
		Transport	5.8%			
		Agriculture	4.2%			
		Others	3.1%			

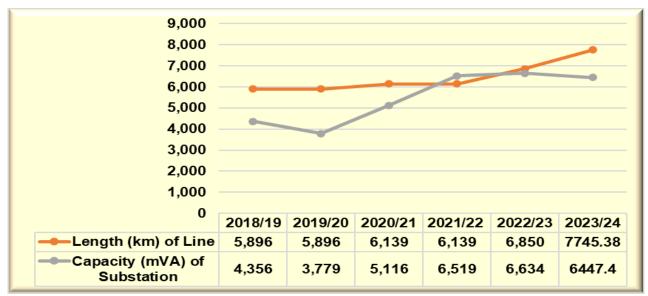
12.	Energy sources		Natural gas, coal, uranium, hydro, biomass, solar, wind, geothermal, tidal and waves
13.	National Energy Balance (2015)	Biomass	85%
		Petroleum	9.3%
		Electricity	4.5%
		Coal and Renewable	1.2%
14.	Annual Electricity Consumption per c	apita (kWh)	105
15.	Power imports (MW)	Uganda	37
		Kenya	0
		Zambia	20
16.	Peak demand, 1 st October , 2024 (M	IW)	1728.24
17.	Electricity demand growth rate (%)		10 - 15
18.	TANESCO's off-grid		Kigoma (8.75MW), Mpanda (7.5MW), Mafia (3.20), Sumbawanga (5.00MW), Inyonga (1.932MW) and Bukoba (2.56MW).
19.	Power imports		Kenya (0 MW), Uganda (37 MW), and Zambia (20 MW).
20.	Network Infrastructure (km)	Transmission	7,745.38
		Distribution	187,817.73
21.	Generation Mix (2044)	Hydro (MW, %)	5,690.4MW; 28.15%
		Natural Gas (MW, %)	6,700MW; 33.18%
		Coal (MW, %)	5,300MW; 26.24%
		Wind (MW, %)	800MW; 3.19%
		Solar (MW, %)	715MW; 3.545
		Geothermal (MW, %)	995MW; 4.93%


Installed Capacity

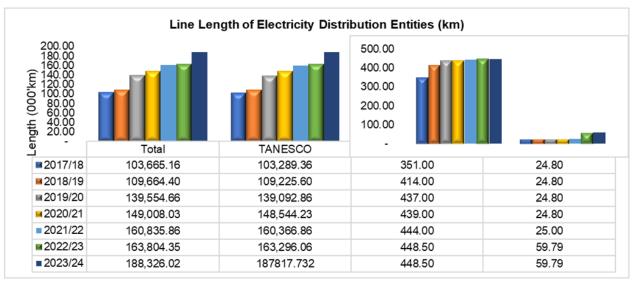
Description	Entity	Capacity (MW)	Percentage (%)	Share of Main- Grid and Off- Grid
	TANESCO	2,630.70	92.53%	98.67%
	IPP (SONGAS)	189	6.65%	
	SPP owned by private entities	23.26	0.82%	
Grid	Total	2,842.96	100.00%	
	TANESCO	28.942	75.42%	1.33%
	SPP owned by private entities	7.4	19.28%	
rid	VSPP owned by private entities	2.03	5.29%	
Off Grid	Total	38.372	100.00%	
	TANESCO	2,659.64	92.31%	100.00%
	IPP (SONGAS)	189	6.56%	
	SPP (all private entities)	30.66	1.06%	
	VSPP (all private entities)	2.03	0.07%	
Total	Total	2,881.33	100.00%	

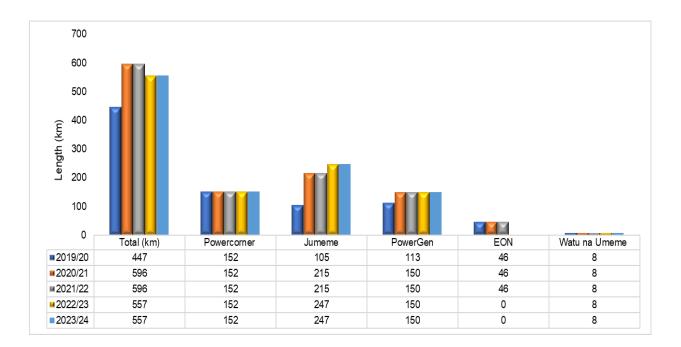

Installed Capacity Growth


Energy Mix (October, 2024)

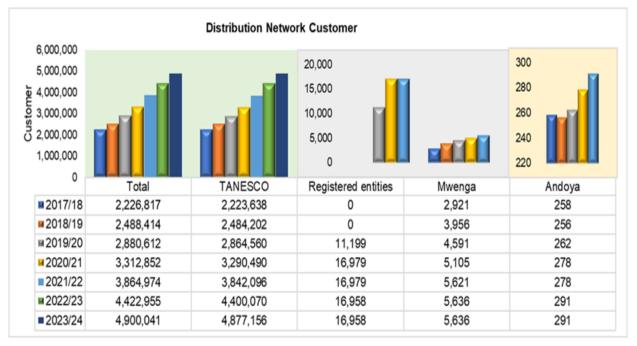

Maximum Demand

Energy Generated (GWh)

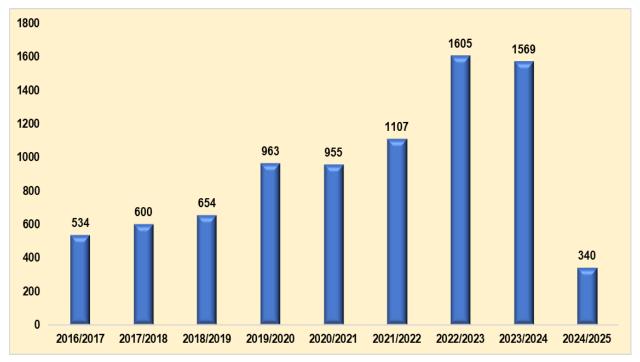

Transmission Network



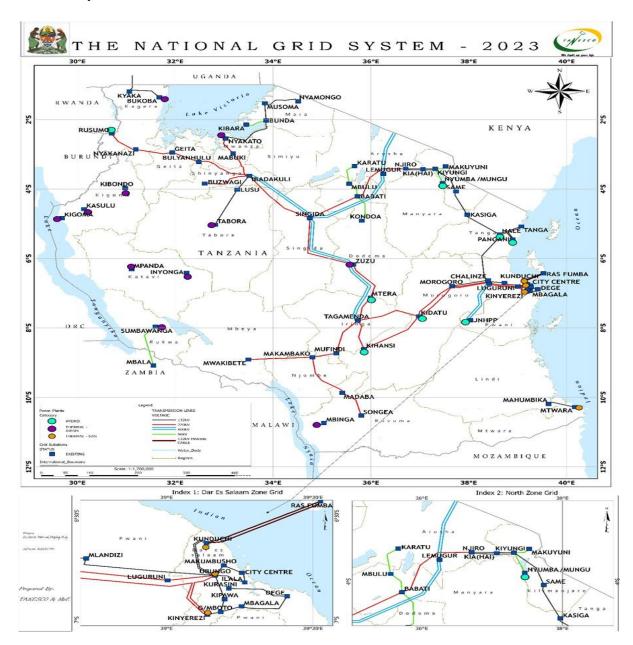
Grid Substations


Distribution Network

Years	2012	2014	2016	2018	2019	2020	2021	2022	2023	2024
Lengths of 400 kV in km	0	0	670	670	670	670	670	670	670	1244.75
Lengths of 220 kV in km	1,710 .69	2,227. 85	2,745	2,922.14	3,011	3,011	3,225	3,225	5,637.19	4095.60
Lengths of 132 kV in km	1,538	1,538. 75	1,626	1,657.06	1,672.5 7	1,672.57	1,701	1,701		1825.01
Lengths of 66 kV in km	543	543	543	543	543	543	543	543	543	580.00
Lengths of 33 kV in km	12,60 2		35,89 5	32,342.3 1	34,081. 6	44,168.6	47,764	63,036	163,804.3 5	63,815.70
Lengths of 11 kV in km	6,392		6,183	6,477.83	6,588.4	11,044.4 0	12,486.1 1			12,630.55
System losses	19%	18%	17%	16%	16%	15.3%	15.16%	15.16 %	14.57%	14.62


Customers Connected

Energy Losses


Electrical Installation Personnel Licence Issued as of October 2024

Operational Licences as of October 2024

S/N	Name Category	Number
1.	Electricity Generation	28
2.	Electricity Transmission	1
3.	Cross-Border Electricity Trade in Electricity	1
4.	Electricity Distribution	2
5.	Electricity Supply	1
	Total	33

Network Expansion

ECONOMIC REGULATION

From 1957	The electricity sector was regulated by the minister responsible for energy in line with the Electricity Ordinance of 1931 (as amended in 1957)
After 1961	Tariff adjustments were approved by the Cabinet and later the powers were granted to the TANESCO Board of Directors and the Minister for Energy to approve tariff adjustments of up to 5% and 10% respectively
1992	To emphasize the need for government control on tariff determination the National Energy Policy of 1992 cited; "Stability of energy price is a contributory factor to stability of prices in general and to planned development, therefore energy pricing will not simply be left to market forces"

2006	In 2006, when EWURA became operational, the cost recovery regime was adopted for tariff determination
2006	TANESCO requested EWURA for a 6% tariff increase to cater for inflation. The request was subsequently approved and became effective from January 2007. in 2007, TANESCO requested a 40% tariff increase and connection charges ranging between 66 - 281% of which only 21.7% and 66 – 215% were approved, respectively
2008	The Electricity Act of 2008 is the principal legislation that governs the power sector in terms of licensing, powers of the Minister and the regulator, and tariff matters
2008	EWURA adopted a standardized mechanism for the development of Small Power Projects (SPPs) in Tanzania in 2008 for which a Standardized Power Purchase Agreement (SPPA) for the Main Grid and off-grid, and a Standardized Tariff Methodology (STM) for the Main Grid, were approved
2012	EWURA approved a 40.29% tariff increase against a request of 155% to cater for operational cost surge stemming from the contracted EPPs and excessive use of TANESCO's thermal plants
2012	EWURA conducted a Cost-of-Service Study (COSS) to provide electric service and developed a Rate Setting Methodology. Based on the COSS results, the tariff was adjusted upward by 39.19% effective from January 2014
2016	TANESCO requested a 1.5% tariff decrease which the Authority subsequently approved. The new order further burdened the already financially troubled corporation by eliminating the monthly service charge of TZS 5,520 and the service line application cost of TZS 5,0000 for T1(General usage) customers
In December 2016	EWURA approved an 8.5% tariff increase effective from 1 st January 2017. However, it did not take into effect

Current Electricity Tariff

Customer Category	Component	Unit	Approved Tariff
D1	Service charge	TZS/Month	0
	Energy charge (0- 75kWh)	TZS/kWh	100
	Energy charges above 75kWh	TZS/kWh	350
T1	Service charge /month	TZS/Month	0
	Energy charge	TZS/kWh	292
	Maximum Demand charge	TZS/kVA/Month	0
T2	Service charge	TZS/Month	14,233
	Energy charge	TZS/kWh	195
	Maximum Demand Charge	TZS/kVA/Month	15,004
T3-MV	Service charge	TZS/Month	16,769
	Energy charge	TZS/kWh	157
	Maximum Demand Charge	TZS/kVA/Month	13,200
T3-HV	Service charge	TZS/Month	0
	Energy charge	TZS/kWh	152
	Maximum Demand Charge	TZS/kVA/Month	16,550

Key

D1: Low usage Tariff for Domestic Customers who on average consume less than 75kWh per mont Any unit exceeding 75kWh is charged a high rate of TZS 350 per kWh. Under this category, power supplied at a low-voltage single phase (230V).

T1:General Usage Tariff for customers including residential, small commercial, and light industrial us Public lighting, and billboards. Power is supplied at low voltage single phase (230V) as well as thr phase (400V).

T2: Applicable to general use customers where power is metered at 400V average consumption is mo than 7,500kWh per meter reading period and demand does not exceed 500kVA per meter readi period.

T3-MV: Applicable customers connected to Medium Voltage

T3-HV: Applicable customers connected to High Voltage including ZECO, Bulyanhulu, and Twiga cement.

Tariff Orders

Effective Date	Approved Tariffs
1 st February 2007	 EWURA approved new electricity tariffs as follows: D1 – TZS 40 per kWh, less or equal to 50kWh per month (low usage); T1 – TZS 106 per kWh
	 T2 – TZS 70 per kWh – Low voltage usage T3 – TZS 65 per kWh – High Voltage usage T5 – TZS 28 per kWh – ZECO
	Approved New service charges - TZS/Month D1 – N/A T1 – TZS 1,892 T2 Low Voltage – TZS 7,012 T3 High Voltage – TZS 7,012 T5 ZECO – TZS 7,012
	Approved Demand Charges - TZS/kVA • D1 – N/A

	• T1 – WA
	 T2 Low Voltage – TZS 7,680 T3 High Voltage – TZS 7,123
	 T5 ZECO – TZS 3,907
1 st January 2008	EWURA approved new electricity tariffs as follows:
	 D1 – TZS 49 per kWh, less or equal to 50kWh per month (low usage);
	• T1 – TZS 129 per kWh
	 T2 – TZS 85 per kWh – Low Voltage
	 T3 – TZS 79 per kWh – High Voltage Supply T5 – TZS 75 per kWh – ZECO
	T5 – TZS 75 per kWh – ZECO Approved New service charges - TZS/Month
	D1 – N/A
	• T1 – TZS 2,303
	T2 Low Voltage – TZS 8,534
	 T3 High Voltage – TZS 8,534
	• T5 - TZS 8,534 - ZECO
	Approved Demand Charges - TZS/kVA
	 D1 – N/A T1 – N/A
	 T1 – IVA T2 Low Voltage – TZS 9,347
	 T3 High Voltage – TZS 8,669
	 T5 ZECO – TZS 4,755
	EWURA approved new electricity tariffs as follows:
11 th January 2011	 D1 – TZS 60 per kWh, less or equal to 50kWh per month (low usage);
	• T1 – TZS 157 per kWh
	 T2 Low voltage usage – TZS 94 per kWh T3 High Voltage usage – TZS 84 per kWh
	 TS Fight voltage usage – 125 84 per kWh TS ZECO – TZS 83 per kWh
	Approved New service charges - TZS/Month
	• D1 – N/A
	• T1 – TZS 2,738 –
	T2 Low Voltage – TZS 10,146
	• T3 High Voltage- TZS 10,146
	• T5 – ZECO – TZS10,146
	Approved Demand Charges - TZS/kVA • D1 – N/A
	• T1 – N/A
	T2 Low Voltage – TZS 12,078
	T3 High Voltage– TZS 10,350
	• T5 – ZECO – TZS 8,610
15 th January 2012	EWURA approved new electricity tariffs as follows:
	 D1 – TZS 60 per kWh, less or equal to 50kWh per month (low usage); T1 – TZS 221 per kWh – residential;
	 T2 – TZS 132 per kWh – Low Voltage
	 T3 – TZS 118 per kWh – High Voltage Supply
	 T5 – TZS 106 per kWh – ZECO
	Approved New service charges - TZS/Month
	• $D1 - N/A$
	 T1 – TZS 3,841 – residential T2 Low Voltage – TZS 14,233
	 T3 High Voltage – TZS 14,233
	 T5 – ZECO – TZS14,233
	• T3 High Voltage – N/A
	Approved Demand Charges - TZS/kVA
	• D1 – N/A
	• T1 – WA
	 T2 Low Voltage – TZS 16,994 T3 High Voltage – TZS 14,520
	 T5 – ZECO – TZS12,079
1 st January 2014	EWURA approved energy charge as follows:
-	 D1 – TZS 100 per kWh, less or equal to 75kWh per month (low usage);
	• T1 – TZS 306 per kWh
	• T2 – TZS 205 per kWh
	 T3 Medium Voltage – TZS 163 per kWh T5 – High Voltage TZS 159 per kWh
	T5 – High Voltage TZS 159 per kWh Approved New service charges – TZS/Month
	Approved New service charges – TZS/Month • D1 – N/A
	• T1 – TZS 5,520
	• T2 – TZS 14,233

T3 Medium Voltage- TZS 16,769
T3 High Voltage – N/A
Approved Demand Charges - TZS/kVA
• D1 – N/A
• T1 – N/A
• T2 – TZS 15,004
 T3 Medium Voltage – TZS 13,200
T3 High Voltage – TZS 16,550
EWURA amended the principal Tariff Order No. 13-007 of January 2014 by extending the order and deferring quarterly tariff adjustments on account of fuel cost, inflation, and exchange rate fluctuations to 30 th April 2015
EWURA approved energy charge as follows:
 D1 – TZS 100 per kWh, less or equal to 75kWh per month (low usage);
 T1 – TZS 292 per kWh;
• T2 – TZS 195 per kWh
 T3 Medium Voltage – TZS 157 per kWh
T5 – High Voltage TZS 152 per kWh
Approved New service charges – TZS/Month
• D1 – N/A
• T1 – N/A
• T2 – TZS 14.233
T3 Medium Voltage- TZS 16,769
• T3 High Voltage – N/A
Approved Demand Charges - TZS/kVA
• D1 – N/A
• T1 – N/A
• T2 – TZS 15.004
 T3 Medium Voltage – TZS 13,200
 T3 High Voltage – TZS 16,550

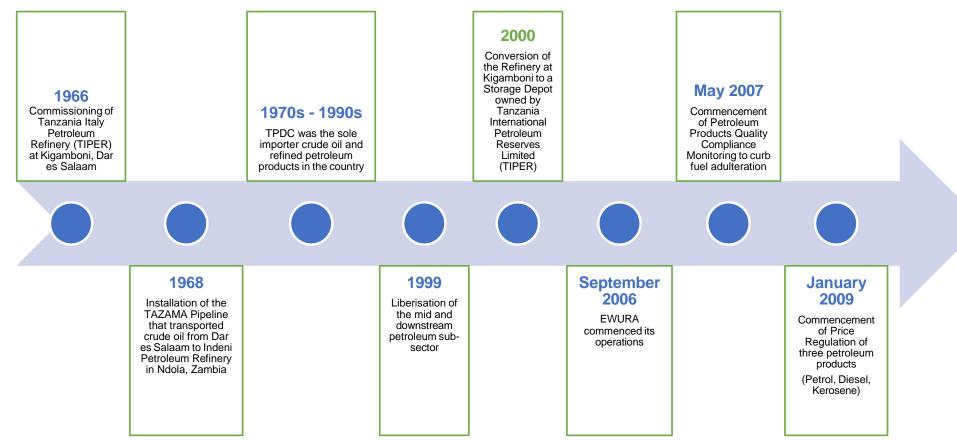
Indicative Tariffs for Large Power Projects

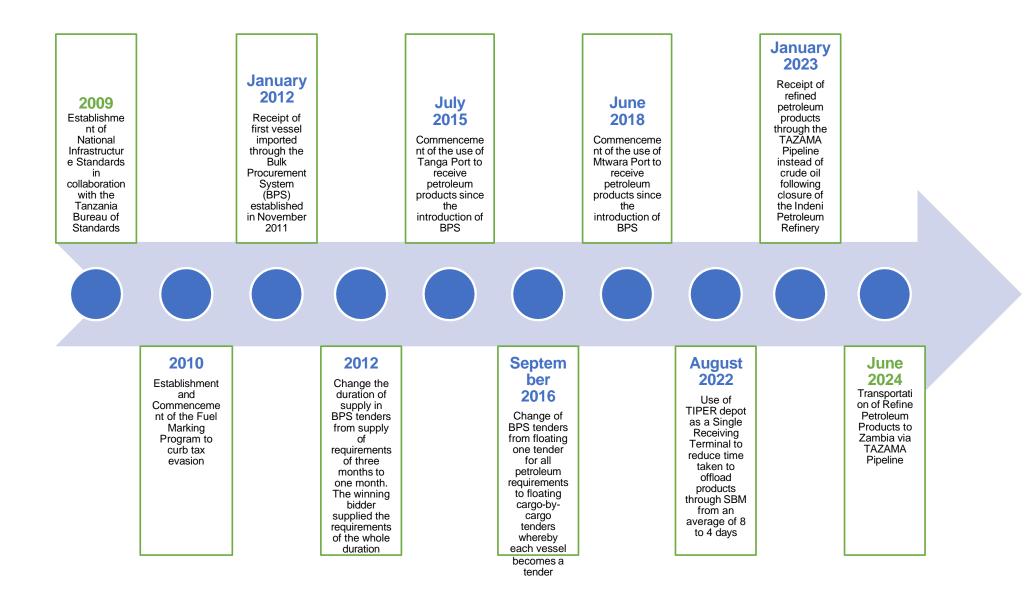
Effective Date	Approved Indic								
August 2016	Recommended	indicati	ve Tarif	fs for S	Selected	Techno	logies	(US¢/k	Wh)
		S	cenario I		5	Scenario II			
	Technology	Capacity Cost	Energy Cost	Total	Capacity Cost	Energy Cost	Total	Range	Сар
	Dispatchable Technol	ogies							
	Hydro	3.57	0.18	3.75	7.08	0.38	7.46	3.71	8.00
	Flash-Geothermal	3.04	-	3.04	10.21	-	10.21	7.16	8.50
	Binary-Geothermal	4.13	-	4.13	10.29	-	10.29	6.16	9.00
	Pulverised Coal	1.10	4.07	5.17	4.21	4.13	8.34	3.17	8.50
	OCGT	0.71	6.78	7.49	1.18	7.44	8.62	1.13	8.70
	CCGT	0.88	4.80	5.67	2.15	5.455	7.60	1.93	8.00
	CCGT-CCS	2.65	4.80	7.44	3.06	5.46	8.52	1.08	8.50
	IGCC	4.23	3.86	8.09	6.46	4.14	10.60	2.51	10.60
	Pulverised-CCS	5.49	5.96	11.44	8.10	6.61	14.71	3.27	12.50
	Non Dispatchable Tee	chnologies	4.4.4	4.4.4		11.04	11.04		7.00
	Onshore Wind Solar PV	-	4.11	4.11	-	11.84	11.84	7.73	7.98
	Offshore Wind	-	5.89 8.02	5.89 8.02	-	13.32	13.32 14.49	7.42	8.00 10.00
	Solar Thermal	-	9.82	9.82	-	14.49 16.08	14.49	6.46 6.26	12.00
GN. 453 of 14 th June				,,,,,	I			0.20	
2019	Technology					Cap Pri US¢/kV			
	CCGT					5.00			
	IGCC					6.00			
	Hydro					4.00			
	Wind					7.00			

Solar	5.00
Indicative Tariffs for Selecte	ed Technologies (USC/kWh)

Standardized Small Power Project Tariff

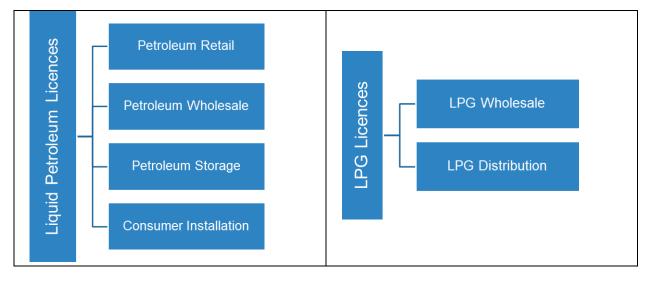
Effective Date	Approved Tariffs								
10 th July	The Electricity (Standardized	d Small Power Pr	oiects						
2009	Tariff) Order, 09-011		0,0013						
2003	First Schedule: Standardiz	zed Small Power	Projects	Tarif	f for Hy	/dro an	d Biom	ass	
	Schedule 1: Main-Grid Cor	nnection							
	Schedule 2: Mini-Grid Con	nection							
		2008 Tariff	2009	Anni	roved	Perce	ntago		
	Description	(TZS/kWh)	Tariff (TZ			Chan			
	Standardized SPP Tariff	334.83		34.83	<u>vii)</u>	Chan	0.00%		
30 th April	The Electricity (Standardized	d Small Power Pr	ojects						
30 th April 2012	The Electricity (Standardized Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con	zed Small Power		Tarifi	f for Hy 2012	/dro an	id Biom	ass	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con	zed Small Power	Projects	ariff	2012 Appro Tariff	oved			
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description	zed Small Power	2011 T (TZS/k	ariff Wh)	2012 Appro Tariff (TZS/	oved kWh)	nd Biom	se	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power	zed Small Power	2011 T (TZS/k	ariff Wh) 21.13	2012 Appro Tariff (TZS/	bved kWh) 152.54		se 26%	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus	zed Small Power nnection Purchase Tariff ted Dry season	2011 T (TZS/k	ariff Wh)	2012 Appro Tariff (TZS/	oved kWh)		se	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power	zed Small Power nnection Purchase Tariff ted Dry season	2011 T (TZS/k 12 14	ariff Wh) 21.13	2012 Appro Tariff (TZS/	bved kWh) 152.54		se 26%	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal	Purchase Tariff ted Dry season ble Wet seasor	2011 T (TZS/k 12 14 10	ariff Wh) 1.13 5.36 99.02	2012 Appro Tariff (TZS/	kWh) 152.54 183.05 137.29	Increa	se 26% 26%	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in	Purchase Tariff ted Dry season Wet seasor	2011 T (TZS/k 12 14	ariff Wh) 1.13 5.36 99.02	2012 Appro Tariff (TZS/	kWh) 152.54 183.05 137.29	Increa	se 26% 26%	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in Schedule 2: Mini-Grid Con	Purchase Tariff ted Dry season ble Wet seasor nection 100 minimum 2011 Tariff	2011 T (TZS/k 12 14 10 2012 Tariff (TZ	ariff Wh) 1.13 5.36 99.02	2012 Appro Tariff (TZS/	kWh) 152.54 183.05 137.29 Perce	Increa	se 26% 26%	
April	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in Schedule 2: Mini-Grid Con Description	Purchase Tariff ted Dry season ble Wet seasor nection 2011 Tariff (TZS/kWh) 380.22 d Small Power Pt	2011 T (TZS/k 12 14 10 2012 Tariff (TZ 48 Jrchase Ta	ariff Wh) 1.13 5.36 99.02 Appi ZS/kW 30.50	2012 Appro Tariff (TZS/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kWh) 152.54 183.05 137.29 Perce Chang	Increas ntage ge 27%	se 26% 26%	
April 2012 1 st July	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in Schedule 2: Mini-Grid Con Description Standardized SPP Tariff The Electricity (Standardized	Purchase Tariff ted Dry season ble Wet seasor nection 2011 Tariff (TZS/kWh) 380.22 d Small Power Pt	2011 T (TZS/k 12 14 10 2012 Tariff (TZ 48 Jrchase Ta	ariff Wh) 21.13 5.36 99.02 Appi ZS/kW 30.50 ariff fo 2013	2012 Appro Tariff (TZS/I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2014) C	Increas ntage ge 27% Order, 20	se 26% 26%	
April 2012 1 st July	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in Schedule 2: Mini-Grid Con Description Standardized SPP Tariff The Electricity (Standardized	Purchase Tariff ted Dry season ble Wet seasor nection 2011 Tariff (TZS/kWh) 380.22 d Small Power Pt	2011 T (TZS/k 12 14 10 2012 Tariff (TZ 48 Jrchase Ta	ariff Wh) 1.13 5.36 9.02 Appin ZS/kW 30.50 ariff fo 2013 Tarif	2012 Appro Tariff (TZS/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	byed kWh) 152.54 183.05 137.29 Perce Chang 2014) C 2014 Appr	Increases Intage ge 27% Order, 20 oved	se 26% 26%	
April 2012 1 st July	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in Schedule 2: Mini-Grid Con Description Standardized SPP Tariff The Electricity (Standardized	Purchase Tariff ted Dry season ble Wet seasor nection 2011 Tariff (TZS/kWh) 380.22 d Small Power Pt	2011 T (TZS/k 12 14 10 2012 Tariff (TZ 48 Jrchase Ta	ariff Wh) 1.13 5.36 9.02 Appin ZS/kW 30.50 ariff fo 2013 Tarif	2012 Appro Tariff (TZS/I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2014) C 2014	Increases Intage ge 27% Order, 20 oved	se 26% 26%	ie
April 2012 1 st July	Tariff) Order, 12-012 First Schedule: Standardiz Schedule 1: Main-Grid Con Description Standardized Small Power Seasonally adjus Standardized SPPT Payal in Schedule 2: Mini-Grid Con Description Standardized SPP Tariff The Electricity (Standardized First Schedule: Main Grid	Purchase Tariff ted Dry season ble Wet season vet season 000000000000000000000000000000000000	2011 T (TZS/k 12 14 10 2012 Tariff (TZ 48 Jrchase Ta	ariff Wh) 1.13 5.36 99.02 Appr zS/kW 30.50 ariff fo 2013 Tarif (TZS	2012 Appro Tariff (TZS/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kWh) 152.54 183.05 137.29 Perce Chang 2014) C 2014) C Appr Tariff (TZS)	Increase Intage ge 27% Order, 20 oved	se 26% 26% 26%	

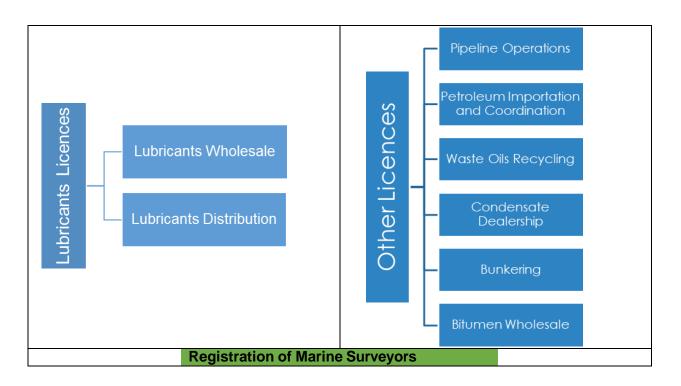

Seasonally a	djusted	Stand	dardized Wet			4 = = 4			
			sea	son		157.4	177	.58 12	2.829
		<u></u>							
Second Schedu	ile: Mini						Demons	-1	
Description									
	SPD	(123/1	XVVII)	I anni (123/1	(*****)	Chang	je	
			490.5			482.64		-1.	.60%
The Electricity (S	Standardi	zed Sm	nall Power Pro	ects					
First Schedule:	Standar	dized	Small Power	Projects	Tariff	for Hydr	o and B	iomass	
			<u>こか/1-28/1-2</u>	0:-					
	Ia			512	ze	l a	Iriff (05	þ/KVVN)	
		-		200			0.170	2	
									_
									_
1MW									
2MW									
3MW									
4MW									
5MW									
71/1//		0.0	91	7M	W		0 1 1 8	3	
8MW		0.0		8M	W		0.115	5	
8MW 9MW		0.0	87	8M 9M	W W		0.115 0.114	5 4	
8MW		0.0	87	8M	W W		0.115	5 4	
8MW 9MW 10MW		0.08 0.08 0.08	87 85	8M 9M 10N	W W IW		0.115 0.114 0.112	5 4	
8MW 9MW	ule: Main	0.08 0.08 0.08	87 85	8M 9M 10N	W W IW		0.115 0.114 0.112	5 4	
8MW 9MW 10MW	ıle: Main	0.08 0.08 0.08	87 85	8M 9M 10N	W W IW	2015	0.118 0.114 0.112 ff	5 4	
8MW 9MW 10MW	ıle: Main	0.08 0.08 0.08	87 85	8M 9M 10N	W W 1W	2015 Approve	0.118 0.114 0.112 ff	5 4	
8MW 9MW 10MW Second Schedu		0.03 0.03 0.03	87 85 Connection us	8M 9M 10M sing Avo	W W 1W bided (2015	0.115 0.114 0.112 0.112 ff ed	5 4	
8MW 9MW 10MW Second Schedu		0.03 0.03 0.03	87 85 Connection us chase Tariff	8M 9M 10N sing Avo 2014 T (TZS/k 19	W W iided Gariff (Wh) 97.31	2015 Approve Tariff (TZS/kW 190	0.118 0.114 0.112 ff ed /h) Pe 0.94	5 4 2 ercentage -3.23%	6 0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally	Small Pov ad	0.03 0.03 - Grid (ver Pur ljusted	87 85 Connection us	8M 9M 10N sing Avo 2014 T (TZS/k 19	W W ided ariff Wh)	2015 Approve Tariff (TZS/kW 190	0.118 0.114 0.112 ff ed /h) Pe	5 4 2 ercentage	6
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S	Small Pov ad	0.03 0.03 - Grid (ver Pur ljusted	87 85 Connection us chase Tariff Dry season	8M 9M 10M sing Avo 2014 T (TZS/k 19 23	W W iided Gariff SWh) 97.31 36.78	2015 Approve Tariff (TZS/kW 190 229	0.118 0.114 0.112 ff ed /h) Pe 0.94 0.13	5 4 2 ercentage -3.23% -3.23%	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally	Small Pov ad	0.03 0.03 - Grid (ver Pur ljusted	87 85 Connection us chase Tariff	8M 9M 10M sing Avo 2014 T (TZS/k 19 23	W W iided Gariff (Wh) 97.31	2015 Approve Tariff (TZS/kW 190 229	0.118 0.114 0.112 ff ed /h) Pe 0.94	5 4 2 ercentage -3.23%	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S in	Small Pov ad SPPT Pa	0.03 0.03 - Grid (ver Pur ljusted ayable	87 85 Connection us chase Tariff Dry season Wet season	8M 9M 10N sing Avo 2014 T (TZS/k 19 23 17	W iided ariff Wh) 7.31 36.78 77.58	2015 Approve Tariff (TZS/kW 190 229 17 ⁷	0.118 0.114 0.112 ff ed /h) Pe 0.94 0.13	5 4 2 ercentage -3.23% -3.23%	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S	Small Pov ad SPPT Pa	0.03 0.03 -Grid (i-Grid (ijusted ayable	87 85 Connection us chase Tariff Dry season Wet season	8M 9M 10N sing Avo 2014 T (TZS/k 19 23 17 3 4 7 9 4 7 9 7 7 9 7 7 9 7 7 9 7 7 7 7 7	W ided ariff Wh) 7.31 6.78 7.58	2015 Approve Tariff (TZS/kW 190 229 17 ⁷ st Tariff	0.118 0.112 0.112 ff ed 0.94 0.94 0.13 1.85	5 4 2 ercentage -3.23% -3.23% -3.23%	/0 /0
8MW 9MW 10MW Second Schedu Second Schedu Standardized S Seasonally Standardized S in Third Schedule	Small Pov ad SPPT Pa	0.03 0.03 0.03 -Grid C ijusted ayable rid Cor 201	87 85 Connection us chase Tariff Dry season Wet season Met season anection using 4 Tariff 2	8M 9M 10N sing Avo 2014 T (TZS/k 19 23 17 23 17 23	W W iided ariff Wh) 77.31 36.78 77.58 ed Cos Appro	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.112 ff ed 0.94 0.94 0.94 0.13 1.85	5 4 2 ercentage -3.23% -3.23% -3.23%	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S in	Small Pov ad SPPT Pa	0.03 0.03 0.03 -Grid C ijusted ayable rid Cor 201	87 85 Connection us chase Tariff Dry season Wet season Met season anection using 4 Tariff 2	8M 9M 10N sing Avo 2014 T (TZS/k 19 23 17 3 4 7 9 4 7 9 7 7 9 7 7 9 7 7 9 7 7 7 7 7	W W iided ariff Wh) 77.31 36.78 77.58 ed Cos Appro	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.112 0.112 ff ed 0.94 0.94 0.13 1.85	5 4 2 ercentage -3.23% -3.23% -3.23%	/0 /0
8MW 9MW 10MW Second Schedu Second Schedu Standardized S Seasonally Standardized S in Third Schedule	Small Pov ad SPPT Pa : Mini-Gi	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	87 85 Connection us chase Tariff Dry season Wet season Met season anection using 4 Tariff 2	8M 9M 10N sing Avo 2014 T (TZS/k 19 23 17 23 17 23 17 23 17 23 17 23 17 23 17 23 17 23 23 17 23 23 23 23 23 23 23 23 23 23 23 23 23	W W iided ariff Wh) 77.31 36.78 77.58 ed Cos Appro	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.112 ff ed 0.94 0.94 0.94 0.13 1.85	5 4 2 ercentage -3.23% -3.23% -3.23% e	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S in Third Schedule Description Standardized S in Standardized S Standardized S	Small Pov ad SPPT Pa : Mini-G i SPP Tariff	0.00 0.00 0.00 -Grid (iusted ayable rid Cor 201 (TZ	87 85 Connection us chase Tariff Dry season Wet season Wet season anection us 4 Tariff 2 S/kWh) 1 482.64	8M 9M 10W sing Avo 2014 T (TZS/k 19 23 17 g Avoide 015 ariff (TZ 493	W W iided ariff Wh) 97.31 36.78 77.58 77.58 cd Cos Appro S/kW 3.97	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.114 0.112 ff ed /h) Pe 0.94 0.13 1.85 1.85	5 4 2 ercentage -3.23% -3.23% -3.23% e	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S in Third Schedule Description	Small Pov ad SPPT Pa : Mini-G i SPP Tariff	0.00 0.00 0.00 -Grid (iusted ayable rid Cor 201 (TZ	87 85 Connection us chase Tariff Dry season Wet season Met season A Tariff 2 S/kWh) 482.64 ling Electricit	8M 9M 10W sing Avo 2014 T (TZS/k 19 23 17 23 17 23 17 23 17 23 17 23 17 23 23 17 23 23 23 23 17 23 23 23 23 23 23 23 23 23 23 23 23 23	W ided (ariff Wh) 7.31 36.78 7.58 77.58 d Cos Appro S/kW 3.97 Grid	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.114 0.112 ff ed /h) Pe 0.94 0.13 1.85 1.85	5 4 2 ercentage -3.23% -3.23% -3.23% e	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S in Third Schedule Description Standardized S in Standardized S Standardized S	Small Pov ad SPPT Pa : Mini-G i SPP Tariff	0.00 0.00 0.00 -Grid (iusted ayable rid Cor 201 (TZ	87 85 Connection us chase Tariff Dry season Wet season Met season A Tariff 2 S/kWh) 482.64 ling Electricit	8M 9M 10W sing Avo 2014 T (TZS/k 19 23 17 g Avoide 015 ariff (TZ 493	W ided (ariff Wh) 7.31 36.78 7.58 77.58 d Cos Appro S/kW 3.97 Grid	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.114 0.112 ff ed /h) Pe 0.94 0.13 1.85 1.85	5 4 2 ercentage -3.23% -3.23% -3.23% e	/0 /0
8MW 9MW 10MW Second Schedu Description Standardized S Seasonally Standardized S in Third Schedule Description Standardized S in Standardized S Standardized S	Small Pov ad SPPT Pa : Mini-G i SPP Tariff	0.00 0.00 0.00 -Grid (iusted ayable rid Cor 201 (TZ	87 85 Connection us chase Tariff Dry season Wet season Met season A Tariff 2 S/kWh) 482.64 ling Electricit	8M 9M 10W sing Avo 2014 T (TZS/k 19 23 17 23 17 23 17 23 17 23 17 23 17 23 23 17 23 23 23 23 17 23 23 23 23 23 23 23 23 23 23 23 23 23	W ided (ariff Wh) 7.31 36.78 7.58 77.58 d Cos Appro S/kW 3.97 Grid	2015 Approve Tariff (TZS/kW 190 229 17 ² st Tariff oved Pe	0.118 0.114 0.112 ff ed /h) Pe 0.94 0.13 1.85 1.85	5 4 2 ercentage -3.23% -3.23% -3.23% e	/0 /0
	SPPT Payable Second Schedu Description Standardized Tariff The Electricity (S Tariff) Order, 20 First Schedule: Minihydro Pov Size 100kW 150kW 250kW 250kW 250kW 500kW 750kW 1MW 2MW 3MW 4MW 5MW 6MW	SPPT Payable inSecond Schedule: MiniDescription StandardizedStandardizedSPPTariffThe Electricity (Standardi Tariff) Order, 2015First Schedule: StandarMinihydro Power PlantSizeTa100kW150kW200kW250kW500kW750kW1MW2MW3MW4MW5MW6MW	SPPT Payable inSecond Schedule: Mini Grid C 2013Description Standardized SPPTariffThe Electricity (Standardized SPPTariffThe Electricity (Standardized Sm Tariff) Order, 2015First Schedule: Standardized Sm Tariff (US 100kW0.1SizeTariff (US 100kW100kW0.1200kW0.1200kW0.1250kW0.1500kW0.1500kW0.13MW0.13MW0.13MW0.15MW0.15MW0.06MW0.0	SPPT Payable inseaseSecond Schedule: Mini 2013Grid Connection Tar 2013Description Standardized(TZS/kWh)StandardizedSPPTariff490.5The Electricity (Standardized Small Power Proj Tariff) Order, 2015First Schedule: Standardized Small Power Proj Tariff (US\$/kWh)SizeTariff (US\$/kWh)100kW0.155150kW0.146200kW0.141250kW0.141500kW0.1231MW0.1232MW0.1153MW0.1025MW0.0986MW0.095	SPPT Payable inseasonSecond Schedule: Mini 2013Grid Connection Tariff 2013Z014Description Standardized(TZS/kWh)TariffStandardizedSPPTariffTariff490.5The Electricity (Standardized Small Power Projects Tariff) Order, 2015Small Power ProjectsFirst Schedule: Standardized Small Power ProjectsMinihydro Power PlantSizeTariff (US\$/kWh)Siz100kW0.1551100kW0.146200200kW0.141300250kW0.134500750kW0.1231M2MW0.1152M3MW0.1083M4MW0.1024M5MW0.0985M6MW0.0956M	SPPT Payable inseasonSecond Schedule: Mini 2013 Standardized Standardized SPPGrid Connection Tariff 2013 (TZS/kWh)Tariff2013 2014Tariff490.5The Electricity (Standardized Small Power Projects Tariff) Order, 2015First Schedule: Standardized Small Power Projects TariffMinihydro Power PlantSizeTariff (US\$/kWh)Size100kW0.1455150kW0.144200kW0.141200kW0.129750kW0.129750kW0.1231MW0.1083MW0.1083MW0.1024MW5MW0.0956MW0.095	SPPT Payable inseason157.4Second Schedule: MiniGrid Connection Tariff2013Tariff2014ApprovedDescription(TZS/kWh)Tariff (TZS/kWh)StandardizedSPP490.5482.64The Electricity (Standardized Small Power Projects Tariff) Order, 2015482.64First Schedule: Standardized Small Power Projects Tariff for HydrBiomass PowSizeTariff (US\$/kWh)SizeTariffMinihydro Power PlantBiomass PowSizeTariff (US\$/kWh)SizeTarifi100kW0.155150kW200kW200kW200kW0.144400kW500kW250kW0.129750kW11MW250kW0.1231MW2MW0.1152MW3MW0.1083MW4MW0.1024MW5MW0.0985MW6MW0.0956MW	SPPT Payable inseason157.4177Second Schedule: Mini Description StandardizedGrid Connection Tariff 20132014Approved Percer Tariff (TZS/kWh)Percer ChangeTariff490.5482.64The Electricity (Standardized Small Power Projects Tariff) Order, 2015482.64First Schedule: Standardized Small Power Projects Tariff for Hydro and BBiomass Power PlantSizeTariff (US\$/kWh)SizeTariff (US\$100kW0.1550.146200kW0.177200kW0.141300kW0.166250kW0.144400kW0.166500kW0.1231MW0.144200kW0.1152MW0.144400kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.123100kW0.124100kW0.123100kW0.124100kW0.123100kW0.124100kW0.123100kW0.124100kW0.123100kW0.124100kW0.125200kW0.124100kW0.125200kW0.124100kW0.125200kW0.124100kW0.125200kW0.124100kW0.125 <td>SPPT Payable inseason157.4177.5812Second Schedule: MiniGrid Connection Tariff2013Tariff2014ApprovedPercentageDescription(TZS/kWh)Tariff (TZS/kWh)Tariff (TZS/kWh)PercentageChangeStandardizedSPP490.5482.64-1.Tariff490.5482.64-1.The Electricity (Standardized Small Power Projects Tariff) Order, 2015First Schedule: Standardized Small Power Projects Tariff for Hydro and BiomassMinihydro Power PlantBiomass Power PlantSizeTariff (US\$/kWh)SizeTariff (US\$/kWh)100kW0.155</td>	SPPT Payable inseason157.4177.5812Second Schedule: MiniGrid Connection Tariff2013Tariff2014ApprovedPercentageDescription(TZS/kWh)Tariff (TZS/kWh)Tariff (TZS/kWh)PercentageChangeStandardizedSPP490.5482.64-1.Tariff490.5482.64-1.The Electricity (Standardized Small Power Projects Tariff) Order, 2015First Schedule: Standardized Small Power Projects Tariff for Hydro and BiomassMinihydro Power PlantBiomass Power PlantSizeTariff (US\$/kWh)SizeTariff (US\$/kWh)100kW0.155


	9.90	9.95	9.84	9.34	9.09
1.01 - 5MW	8.95	9.42	9.24	8.64	8.56
5.01 - 10MW	7.83	8.88	8.34	7.60	7.55
ariffs for Main G	rid Connection		ND SCHEDUI st Generatior		vork
		THIR	D SCHEDULE		
Key Assumptions	s for Determinati		<u>D SCHEDULE</u> for VSPPs	<u> </u>	
Key Assumptions					
		ion of Tariffs alue oduced shall an the ene	for VSPPs not ergy	<u>-</u>	
ItemInstalled CapacityReturn	Va The energy probe more that required to mee four years	ion of Tariffs alue oduced shall an the ene	for VSPPs not ergy		
Item Installed Capacity	Va The energy probe more that required to mee four years 18	ion of Tariffs f alue oduced shall an the end et the demand	for VSPPs not ergy		
ItemInstalled CapacityReturn Equity	Va The energy probe more that required to mee four years 18 Not more	ion of Tariffs f alue oduced shall an the ene et the demand 3.5%	for VSPPs not ergy		
ItemInstalled CapacityReturnon EquityCost of DebtDebtto Equity	Va The energy probe more that required to mee four years 18 Not more	ion of Tariffs f alue oduced shall an the ene et the demand 3.5% e than 9.0% 0:30	for VSPPs not ergy d for		
ItemInstalled CapacityReturnon EquityCost of DebtDebt ratio	Va The energy probe more that required to mee four years 18 Not more 70	ion of Tariffs f alue oduced shall an the ene et the demand 3.5% e than 9.0% 0:30	for VSPPs not ergy d for		
ItemInstalled CapacityReturnon EquityCost of DebtDebtto Equity ratioOPEXCapacity factor: Micro/Mini-	Va The energy probe more that required to meet four years 18 Not more 70 Not more that	ion of Tariffs f alue oduced shall an the ene et the demand 3.5% e than 9.0% 0:30 n 8% of CAPE	for VSPPs not ergy d for		
ItemInstalled CapacityReturnonEquityCost of DebtDebtDebtOPEXCapacity factor:Micro/Mini- hydro	The energy probe more that required to mee four years 18 Not more 18 Not more 18 Not more 19 Not more that not less	ion of Tariffs f alue oduced shall an the end et the demand 3.5% e than 9.0% 0:30 n 8% of CAPE than 55%	for VSPPs not ergy d for		
ItemInstalled CapacityReturnon EquityCost of DebtDebtto EquityOPEXCapacity factor: Micro/Mini- hydroBiomass	The energy probe more that required to mee four years 18 Not more 70 Not more that not less not less	ion of Tariffs f alue oduced shall an the end et the demand 3.5% e than 9.0% 0:30 n 8% of CAPE than 55% than 85%	for VSPPs not ergy d for		
ItemInstalled CapacityReturnonEquityCost of DebtDebtDebtOPEXCapacity factor:Micro/Mini- hydro	The energy probe more that required to mee four years 18 Not more that 70 Not less not less not less 70	ion of Tariffs f alue oduced shall an the end et the demand 3.5% e than 9.0% 0:30 n 8% of CAPE than 55%	for VSPPs not ergy d for		

REGULATORY TOOLS

1.	Electricity Act 2008
2.	Tariff Application Guidelines of 2009
3.	The Electricity Regulation of Distribution Services Rules 2011
4.	The Electricity (Tariff Setting) Rules, 2013
5.	Electricity Initiation of Procurement of Power Projects Rules, 2014
6.	The Electricity Regulation of Supply Services Rules, 2014
7.	The Electricity (Tariff Setting) Rules, 2016
8.	The Electricity Development of Small Power Projects Rules, 2016
9.	The Electricity and Natural Gas Tariff Application and Rate Setting Rules, 2021
10.	Standardized Power Purchase Agreement (SPPA), 2008




EACOP Project

Signing of HGAs	 11th April 2021 - with the Government of Uganda 20th May 2021 - with the Government of Tanzania
Shareholding	 15% - The Government of Uganda 15% - The Government of Tanzania 62% - Total East Africa Midstream B.V. 8% - China National Offshore Oil Corporation (CNOOC)
Pipeline Coverage	 1,443 km from Hoima in Uganda to Chongoleani, Tanga in Tanzania 296 km in Uganda transversing through 10 districts 1,147 km in Tanzania transversing through 8 regions, 24 districts, 134 wards. The covered regions are Kagera, Geita, Shinyanga, Tabora, Singida, Dodoma, Manyara and Tanga

TECHNICAL REGULATION

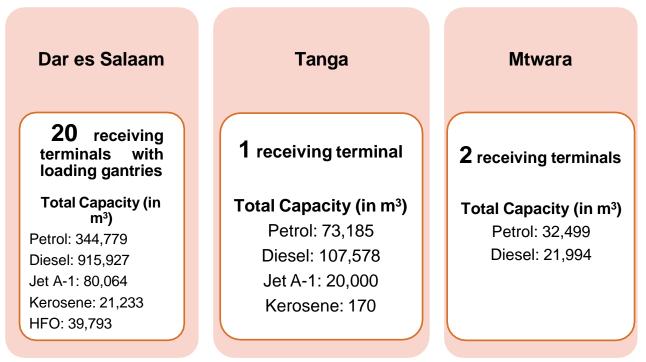
Types of Licenses

Number of Licensees

1.	Petroleum Licences	Wholesale		112
	related to white products	Retail (Petrol	Rural	457
	(petrol, diesel & kerosene)	Stations)	Urban	2,143
	business		Total	2,600
		Storage		23
		Consumer installations		97
2.	Number of LPG Licences	Wholesale		20
		Distributions		111
3.	Number of Lubricant	Wholesale		100
	licences	Distribution		5
4.	Other licences	Pipeline operation		1
		Petroleum importa	ation	1
		Condensate dealership		7
		Bunkering		3

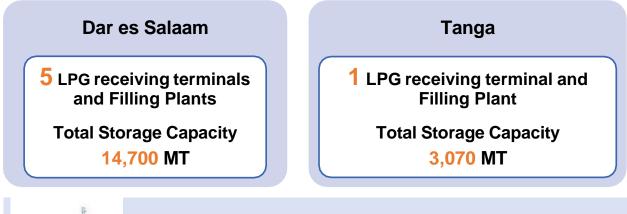
Supply and Consumption

1.	Average daily consumption	Petrol (litres)	4,665,625
		Diesel (litres)	6,630,728
		Kerosene (litres)	25,203
		LPG (kg)	485,356
		Jet A-1 (litres)	592,651
2.	Number of pre-qualified suppliers for importation		18
3.	Quantity of imported liquid fuel	Domestic (litres)	4,010,326,736 (46%)
		Transit (litres)	4,721,570,539 (54%)
4.	Quantity of imported LPG (MT)		364,981
5.	Quantity of supplied lubricants	Imported (litres)	10,884,482


Blended (litres) 49,885,835		
	Blended (litres)	49,885,835

Petroleum Products Infrastructure

Offloading Facilities


Berthing Facility	Location of the Facility	Offloaded Product	Maximum Vessel Capacity (DWT)
Single Buoy Mooring (SBM)	Dar es Salaam	Diesel	150,000
Kurasini Oil Jetty 1 (KOJ1)	Dar es Salaam	Petrol, Jet A-1, Kerosene, HFO, Vegetable Oil, Diesel	45,000
Kurasini Oil Jetty 2 (KOJ2)	Dar es Salaam	LPG Backloading petroleum products to Zanzibar	5,000
Raskazone	Tanga Diesel & Petrol Backloading petroleum products to Zanzibar		40,000
Chumbageni	Tanga LPG		
Mtwara Port	Mtwara	Diesel & Petrol	38,000

Terminals for Liquid Petroleum Products

There is also a TAZAMA receiving terminal at Kigamboni, Dar es Salaam with the capacity of storing 231,000m³ of AGO. The terminal does not have a loading gantry and thus all the products are currently received and transported to Zambia only through the TAZAMA pipeline.

LPG and Lubricant Infrastructure

36 Operational Upcountry LPG Storage and Filling Plants located in 19 regions

7 Lubricants Blending Plants

Petroleum Transportation Infrastructure

Road Tankers

TAZAMA Pipeline

Railway Line

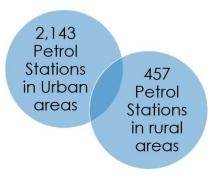
Road tankers are the main transport mode used for the transportation of petroleum products within Tanzania and to the neighbouring landlocked countries.

Currently used to transport petrol and diesel from Tanga depot to the depots in Kigoma and Mwanza through the central railway line passing through Ruvu, Morogoro, Dodoma and Tabora.

Length: 1,710 km

Diameter: 8-inch with some parts with 12-inch

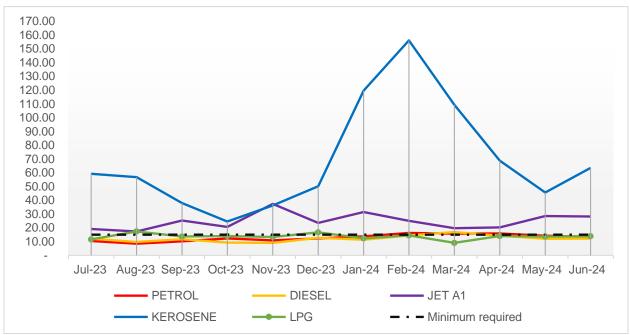
Route: Kigamboni, Dar es Salaam via Morogoro, Iringa and Mbeya regions to Indeni, Zambia

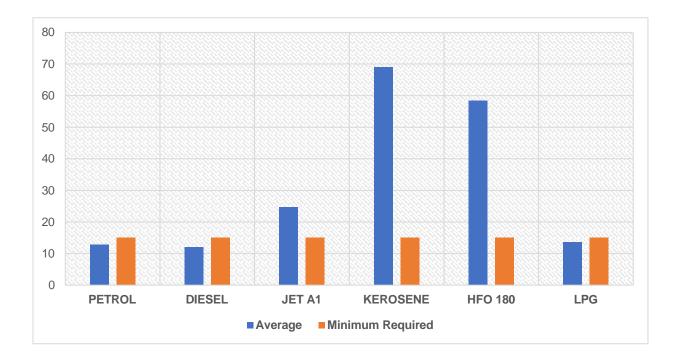

Transported product: Diesel Installed capacity: 1.1 million metric tons per annum

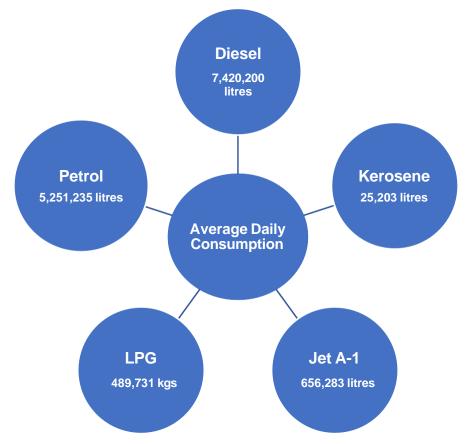
Petrol Stations Distribution by Zones

ZONE	Region	Grand Total
	Mbeya	121
Couthorn Highlondo	Njombe	60
Southern Highlands	Rukwa	26
(322)	Ruvuma	58
	Songwe	57
	Dodoma	133
Central	Iringa	65
(373)	Morogoro	125
	Singida	50
	Arusha	130
Northern	Kilimanjaro	121
(418)	Manyara	74
	Tanga	93
	Dar es Salaam	437
Eastern	Lindi	58
(722)	Mtwara	65
	Pwani	162
	Geita	91
1 - 1	Kagera	125
Lake	Mara	85
(509)	Mwanza	167
	Simiyu	41
	Katavi	24
Western	Kigoma	63
(256)	Shinyanga	101
	Tabora	68
	Grand Total	2,600

Spatial Distribution of Petrol Stations in the Country

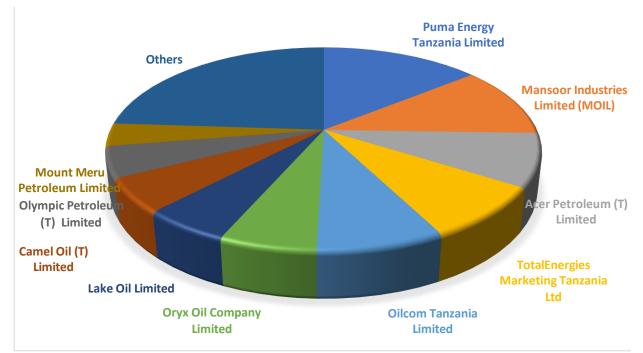


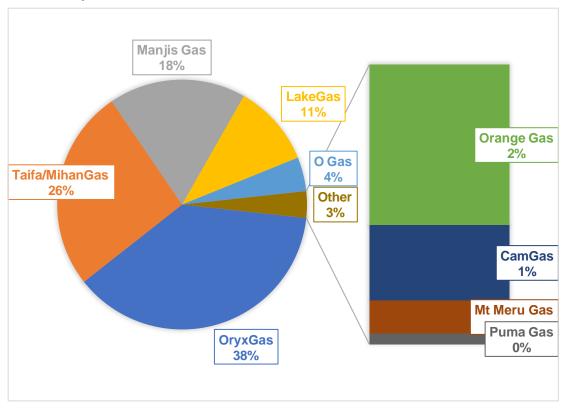



Petroleum Products Supply and Consumption

Ports	Dar es Salaam, Tanga and Mtwara		
Destination of imported products	 Mainland Tanzania Transshipment to Zanzibar Transit to Zambia, Malawi, Democratic Republic of Congo, Rwanda, Burundi and Uganda 		
Method of procurement Bulk Procurement System (BPS) for diesel, petrol, kerd Jet A-1 intended for Mainland Tanzania BPS is done through competitive tenders held monthly Individual company arrangements in the procurement of products including LPG, HFO and Lubricants Products for the transit market can be procured through Procurement System or individual arrangements of companies 			
Average Number of BPS Vessels Received in a Month	 3 Diesel Vessels each with 70,000 – 100,000MT 4 Petrol Vessels each with 32,000 – 39,000MT 1 Jet A-1/Kerosene Vessel with 25,000 – 32,000MT 		
Ratio of importation of petroleum products for the local and transit market	✤ 46:54		
Supply of Lubricants	 19% imported 81% blended 		

Average Stock Days Coverage





Daily Consumption of Petroleum Products in Mainland Tanzania

LPG Companies Market Share

Name of the Company	Location	MSP	AGO	JET A-1	IK	FO 125	FO 180
Afroil Investment	Kigamboni	12,041	27,940	-	-	-	-
Camel Oil	Kurasini	13,571	33,395	-	-	-	11,187
GAPCO	Kurasini	29,861	39,579	11,551	-	-	-
GBP	Kurasini	28,704	31,962	-	9,119	-	-
Hass Petroleum	Kigamboni	10,282	14,165	-	-	-	-
Lake Oil	Kigamboni	27,112	37,200	17,947	-	-	-
Malawi Cargo	Kurasini	8,500	12,500	-	-	-	-
MOIL	Kigamboni	15,000	27,000	-	-	-	-
Mogas	Kigamboni	16,000	24,000	-	-	-	-
Oilcom	Kurasini	14,141	37,582	12,226	5,973	-	-
Oryx Energies	Kurasini	13,463	40,730	933	-	-	4,498
Puma Energy	Kurasini	10,056	36,326	31,693	-	1,820	2,348
Sahara	Kigamboni	35,606	35,545	-	-	-	-
Star Oil	Kurasini	12,941	24,800	-	-	-	-
Super Star Forwarders	Kurasini	-	11,566	5,714	418	1,250	7,307
TIPER	Kigamboni	56,302	180,246	-	5,723	-	11,383
Vivo Energy	Kurasini	11,943	12,160	-	-	-	-
World Oil (I)	Kigamboni	11,256	22,231	-	-	-	-
World Oil Ltd (II)	Kigamboni	18,000	36,000	-	-	-	-
GBP (T) Ltd	Tanga	73,185	107,578	20,000	170	-	-
G.M. & Company	Mtwara	30,000	19,500	-	-	-	-
Oilcom	Mtwara	2,499	2,494	-	-	-	-
Grand Total		450,463	814,499	100,064	21,403	3,070	36,723
TAZAMA	Kigamboni	-	231,000	-	-	-	-

STORAGE TERMINALS AT THE RECEIVING PORTS IN TANZANIA (cubic metres)

OPERATIONAL LPG STORAGE AND FILLING PLANTS AT THE RECEIVING PORTS

S/N	Name of Facility	Physical Location	Capacity (MT)
1.	Taifa Gas Tanzania Limited – Kigamboni LPG Facility	Vijibweni industrial area, Kigamboni, Dar es Salaam	7,450
2.	Oryx Energies Tanzania Limited – Kigamboni LPG Facility	Vijibweni industrial area, Kigamboni, Dar es Salaam	3,100
3.	Manjis Gas Supply Limited – Kigamboni LPG Facility	Vijibweni industrial area, Kigamboni, Dar es Salaam	2,900
4.	Lake Gas Limited – Kigamboni LPG Facility	Vijibweni industrial area, Kigamboni, Dar es Salaam	750
5.	Oilcom Tanzania Limited – Kurasini LPG Facility	Kurasini, Dar es Salaam	500
6.	Lake Gas Limited – Tanga LPG Facility	Chumbageni, Tanga	3,050
Total Capacity			17,750

UPCOUNTRY LPG STORAGE FACILITIES IN MAINLAND TANZANIA

S/N	Name of Facility	Region	Capacity in MT
1.	Acer Petroleum Tanzania Limited - Arusha LPG Facility	Arusha	50
2.	Lake Gas Limited - Arusha LPG Facility	Arusha	60
3.	Manjis Gas Limited - Arusha LPG Facility	Arusha	180
4.	Orange Gas Limited - Arusha LPG Facility	Arusha	262
5.	Taifa Gas Tanzania Limited - Arusha LPG Facility	Arusha	46
6.	Oryx Energies Tanzania Limited - Dodoma LPG Facility	Dodoma	110
7.	Taifa Gas Tanzania Limited - Dodoma LPG Facility	Dodoma	146
8.	Taifa Gas Tanzania Limited - Geita LPG Facility	Geita	23
9.	Lake Gas Limited - Iringa LPG Facility	Iringa	34
10.	Oryx Energies Tanzania Limited - Iringa LPG Facility	Iringa	25
11.	Taifa Gas Tanzania Limited - Iringa LPG Facility	Iringa	23
12.	Taifa Gas Tanzania Limited - Bukoba LPG Facility	Kagera	23
13.	Taifa Gas Tanzania Limited - Kigoma LPG Facility	Kigoma	23
14.	Oryx Energies Tanzania Limited - Moshi LPG Facility	Kilimanjaro	110
15.	Taifa Gas Tanzania Limited - Moshi LPG Facility	Kilimanjaro	23
16.	Taifa Gas Tanzania Limited - Lindi LPG Facility	Lindi	23
17.	Taifa Gas Tanzania Limited - Babati LPG Facility	Manyara	23

18.	Taifa Gas Tanzania Limited - Musoma LPG Facility	Mara	23
19.	Lake Gas Mbeya	Mbeya	20
20.	Oryx Energies Tanzania Limited - Mbeya LPG Facility	Mbeya	50
21.	Taifa Gas Tanzania Limited - Mbeya LPG Facility	Mbeya	46
22.	Lake Gas - Morogoro (nyuma ya nanenane)	Morogoro	20
23.	Taifa Gas Tanzania Limited - Morogoro LPG Facility	Morogoro	46
24.	Lake Gas Limited – Mwaza LPG Facility	Mwanza	60
25.	Oryx Energies Tanzania Limited - Mwanza LPG Facility	Mwanza	260
26.	Taifa Gas Tanzania Limited - Mwanza LPG Facility	Mwanza	146
27.	Taifa Gas Tanzania Limited - Njombe LPG Facility	Njombe	23
28.	Taifa Gas Tanzania Limited - Sumbawanga LPG Facility	Rukwa	23
29.	Taifa Gas Tanzania Limited - Songea LPG Facility	Ruvuma	23
30.	Oryx Energies Tanzania Limited - Isaka LPG Facility	Shinyanga	50
31.	Taifa Gas Tanzania Limited - Kahama LPG Facility	Shinyanga	23
32.	Taifa Gas Tanzania Limited - Shinyanga LPG Facility	Shinyanga	23
33.	Taifa Gas Tanzania Limited - Singida LPG Facility	Singida	23
34.	Taifa Gas Tanzania Limited - Tabora LPG Facility	Tabora	23
35.	Lake Gas - Tanga Kange	Tanga	13

36.	Taifa Gas Tanzania Limited - Tanga LPG Facility	Tanga	23
			2,102

ECONOMIC REGULATION OF PETROLEUM OPERATIONS

2003	The National Energy Policy acknowledged that the costs of petroleum products to Tanzanian customers have been high and few actors dominate the supplying market
2000-2008	Petroleum product prices were calculated and published in the market by individual petroleum marketing companies. The change of prices was daily and sometimes hourly as much as exchange rates change.
2009	EWURA introduced petroleum pricing. The Authority continued to publish indicative and cap petroleum products prices as per the requirement of the Petroleum Products Pricing Setting Rules that were published in the year 2009.
2013	EWURA commissioned a study to Ernst &Young to evaluate the wholesale and retail margins for the petroleum sector. Their estimates showed a wholesale margin of TZS 107 per litre against the recommended margin of TZS 124 per litre and for retailers' margin, the calculations resulted in estimates of TZS 90 per litre compared to a maximum margin of TZS 64 per litre.
2011	The commencement of the Bulk Procurement System (BPS) to establish a petroleum supply system in which all players were assured of the security of supply at the most competitive prices possible, by purchasing from a pool of imports obtained from suppliers selected through a competitive bidding process to take advantage of the economies of scale. The system is designed to bring maximum utilization of the assets along the supply chain to accommodate the growing demand for petroleum products in the country and the region at a minimum cost.
Nov 2011 to August 2016	BPS tenders were floated as one tender every month where the winning bidder had to supply the total quantity of petroleum products required for a given month.
September 2016	BPS tenders were floated as cargo-by-cargo tenders where each vessel that delivered products in the country was considered to be tender.
2012– Nov. 2021	EWURA continued to monitor the movement of refined petroleum products prices both in the world market and in the local market. Relevant FOB quotations for petroleum products sold in Tanzania continued to be Mediterranean (MED) for petrol and Arabian Gulf (AG) for Diesel and Jet-A1, as published in Platt's Oilgram.
August 2015	Commencement of importation of petroleum products through Tanga port.
Dec. 2021 to date	EWURA continues to set petroleum cap prices referring to relevant FOB prices from the Arab Gulf for Diesel, Petrol, and Kerosene

ECONOMIC REGULATION

Domestic Petroleum Product Prices

Domestic prices of petrol, diesel and kerosene are regulated in line with the provisions of the Energy and Water Utilities Regulatory Authority (Petroleum Products Price Setting) Rules, 2022 and its amendments. Currently, the cap prices of the three products are determined by considering the weighted average cost of products available in the depots and the products to be received in the month that prices become effective.

Prices of LPG are determined by the licenced wholesale companies. EWURA monitors the prices and provides necessary directives when the movement of prices is not in line with the trend of LPG prices in the world market. Prices of all other petroleum products such as Jet A-1 and HFO are also set by the wholesale companies through agreements that they have with the customers. The key drivers for domestic market prices, particularly for petroleum products, are influenced by:

- **FOB Prices**: The primary determinant of domestic prices is the FOB price at the point of origin. This reflects the cost of the goods before they are shipped and is a major contributor due to Tanzania's status as a net importer of petroleum products.
- **Premiums and Exchange Rate Movements**: Another key driver is the premium attached to petroleum imports, which includes handling, insurance, and other related costs. Additionally, fluctuations in exchange rates significantly impact the final cost, as petroleum products are usually traded in foreign currencies.
- **Demurrage Costs**: Capacity constraints at the port, coupled with delays in offloading by importers, can lead to demurrage charges. These are extra fees incurred when a ship is delayed at the port, further increasing overall costs.
- Security Issues and Sea Route Diversions: The presence of piracy, banditry, and political instability in key shipping lanes, such as the activities of the Houthis, can force ships to take longer, less direct routes. This increases transport costs, which eventually translate into higher domestic market prices.

These factors combined create a complex environment in which global and local issues interact to shape the final prices paid by consumers. In addition to the factors mentioned, it is important to note that taxes and levies form part of key components of the domestic market price for petroleum products. However, since these taxes and levies remain constant over time, they do not function as active drivers of price change.

1.	The Energy and Water Utilities Regulatory Authority (Petroleum Products Price Setting) Rules, 2009
2.	The EWURA (Petroleum Products Price Setting Rules), Amendments, 2011 to reflect
	the Petroleum Bulk Procurement System
3.	The EWURA (Petroleum Products Price Setting Rules), Amendments, 2013 to
	accommodate revised Wholesalers and Retailers margins

PETROLEUM REGULATORY TOOLS

4.	The EWURA (Petroleum Products Price Setting Rules), Amendments, 2015 following
	the introduction of Tanga Port for the importation of petroleum products and
	fluctuations in foreign exchange rates
5.	The Petroleum (Bulk Procurement) Regulations, 2015
6.	The EWURA (Petroleum Products Price Setting Rules), Amendments, 2015 following
	the enactment of the Finance Act of 2018
7.	The Energy and Water Utilities Regulatory Authority (Petroleum Products Price
	Setting) (Amendment) Rules, 2017
8.	The Petroleum (Bulk Procurement) Regulations, 2017
9.	The EWURA (Petroleum Products Price Setting Rules), Amendments 2019 to include
	the pricing template of LPG
10.	The EWURA (Petroleum Products Price Setting Rules), Amendments, 2020 to include
	the TASAC fee in the pricing template and changes on wholesale and retail margins
11.	The Energy and Water Utilities Regulatory Authority (Petroleum Products Price
	Setting) (Amendment) Rules, 2022
12.	The Energy and Water Utilities Regulatory Authority (Petroleum Products
	Price Setting) Rules, 2022
13.	The EWURA Petroleum Products Price Setting (Amendment) Rules, 2023

NATURAL GAS SECTOR

1952-1964	First exploration wells drilled in coastal areas
1969	TPDC was established through Government Notice No.140 of 30 th May 1969
	under the Public Corporations Act No.17 of 1969.
1973	TPDC became operational.
1974	AGIP discover natural gas at Songo Sogo Island, Lindi
1980-1991	The enactment of the Petroleum (Exploration and Production) Act in 1980. The
1000	discovery of natural gas in the Mnazi Bay area in the Mtwara region in 1984
1982	AGIP discovers natural gas at Mnazi Bay, Mtwara.
1982	TPDC commissioned studies for the utilization of Songo Songo gas. The uses identified were Methanol and fertilizer production. Fertilizer project identified, KILAMCO formed as an implementing company but the project failed due to the collapse of the market price of fertilizer.
1991	TPDC carried out a study on the utilization of gas to produce electricity. Project
	viability entailed bringing gas to Dar es Salaam. The current Songo Songo gas- to-electricity project was conceived.
1992	The enactment of the first National Energy Policy of 1992
1992-1999	The increase in petroleum exploration activities
	The collaboration among the TPDC, TANESCO, Tanganyika Oil Company, and other international companies such as Ocelot, Trans-Canada, AMOCO, KUFPEK, Shell, Excon, and Mobil to conduct natural gas activities
2000-to date	The increased number of local and International Oil Companies for petroleum operations and activities. These are Tanzania Petroleum Development Corporation (TPDC), Songas Limited, Pan African Energy Tanzania Limited (PAET), and Maurel & Prom (M&P). Other service providers that are still

	exploring offshore and onshore are Ophir Energy plc, Shell/BG Group plc (BG), Statoil, ExxonMobil, and Ndovu Resources (Aminex).
	Songo Songo and Mnazi Bay gas projects entered successful business activity in 2004 and 2006
2003	The Government revised the National Energy Policy of 1992 and enacted the National Energy Policy of 2003
2004	Songo Songo gas discovery was commercialized as a gas-to-electricity project by Songas became operational.
2006	Mnazi Bay gas field commercialized as gas to power project by Artumas Group in Mtwara region become operational
2012	The Government prepared a Gas Bill 2012 but was not enacted. It was decided to revise the Petroleum (Exploration and Production) Act, 1980 and include the Gas Bill contents into the revised Act
2013	The government of Tanzania reserved Strategic blocks for TPDC. These blocks include Eyasi Wembere, Block 4/1 B, Block 4/1 C, and West Songo Songo.
2010 – 2014	Huge discovery of deep offshore natural gas reserves amounting to 47.13 TCF. The discovery made on Block 1, Block 2, Block 3 and Block 4
2015	The revision of the National Energy Policy 2003 and the enactment of the National Energy Policy 2015
2015	The enactment of the Petroleum Act, 2015.
2016	The Ministry of Energy and Minerals established the Petroleum (Natural Gas Pricing) Regulations, 2016 which were published in the Government Notice No. 285 dated 7 th October 2016.
	Through the Regulations, two natural gas pricing methodologies were approved which include Capacity Weighted Distance Methodology (transmission) and Postage Stamp Methodology (distribution).
	After the gazetting of the Regulations, the Ministry invited all stakeholders to participate in the process that would facilitate the review of natural gas prices

TECHNICAL REGULATION

1.	Natural Gas Reserve GIIP (TCF) Onshore GIIP (TCF)	10.41
	Offshore GIIP (TCF)	47.13
	Total (TCF)	57.54
2.	Proven Reserve (TCF)	1.169
3.	Maximum achievable Daily Production (MMscfd) [Songo Songo field - 130Mmscfd; Mnazi Bay field - 122Mmscfd]	252
4.	Number of producing wells (Songo Songo Island 7 and Mnazi Bay (5)	12
5.	Number of industrial Customers connected to Natural Gas	52
6.	Gas fired Power Plants installed capacity (MW)	1,198.82
7.	Number of institutions using Natural Gas	7
8.	Number of Motor vehicles using Natural Gas	5,100
9.	Number of Households using Natural Gas	1,514
10.	Number of CNG stations	5
11.	Explorable Potential Area	534,000km ²
12.	Explored Area	159,000km ²

Natural Gas Infrastructures

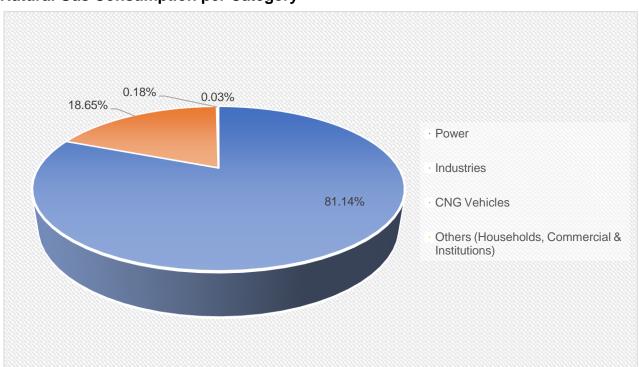
Processing Plants

Sn	Name	Capacity (MMscfd)	Operation Started	Ownership	Operator	Location
1	Songo Songo Gas Processing Plant	110	2004	SONGAS	Pan-Africa Energy	Songo Songo Island, Lindi
2	Mnazi Bay Gas Processing Plant	10	2007	M&P	Maurrel & Prom	Mnazi Bay, Mtwara
3	TPDCSongoSongoGasProcessing Plant	140	2016	GoT	TPDC	Songo Songo Island, Lindi
4	TPDC Madimba Gas Processing Plant	210	2015	GoT	TPDC	Madimba, Mtwara

Transportation Pipeline

Sn	Pipeline Name	Capacity (MMSCFD)	Size	Length (km)
1	Ubungo-Mikocheni Pipeline	7.5	12"	6.2
2	SONGAS Pipeline (SS to DSM)	105	16"	232
3	Mtwara-Dar-es-salaam Pipeline	784	36"	542
4	Mnazi Bay to Mtwara Gas Pipeline	70	8"	27
5	Goodwill connection pipeline	15	10"	1.6
6	6 Tegeta Power Plant connection pipeline		8"	4.6
7	Kinyerezi I connection pipeline	80	8"	1.3
8	Ubungo Power Station connection pipeline	70	8"	0.5
		TOTAL LEN	GTH (km)	815.2

Distribution Network


Region	Length (km)	Key players
Dar es Salaam	154.97	TPDC and PAET
Lindi	28.125	TPDC and PAET
Mtwara	27.8	TPDC and PAET
Pwani	9.6	TPDC and PAET
Grand Total	220.495	

Number of Operation License

S/n	Operation	Type of License	No. of Licenses issued as of June 2024	Key players
1.	Natural Gas Processing	NaturalGasProcessing Operations	2	TPDC/PAET, ANRIC, TAQA
2.	Natural Gas Transmission	Natural Gas Transmission Operations	1	Dalbit, and Dangote
3.	Compressed Natural Gas (CNG)	CNG Filling Station Operations	2	
	Operations	CNG Filling Station Operations (Own Use)	2	
		CNG Supply Operation	1	

Natural Gas Usage

Customer Category	Total No.	Narrations			
		Dar es Salaam	Pwani	Mtwara	Lindi
Power Plant (MW)	1,198.82	1,177.82	-	13	3
Industries (No.)	52	44	7	1	-
Institutions (No.)	07	3	-	4	-
Households (No.)	1,514	880	-	425	209
CNG stations (No.)	5	3	1	1	-
CNG Vehicles (No.)	5,100				

Natural Gas Consumption per Category

ECONOMIC REGULATION

Natural Gas Tariff

Effective Date	Approved Tariffs					
23 rd May 2008	The Energy and Water Utilities Regulatory Authority (Songas Limited)					
	(Natural Gas Processing and Transportation Tariff Adjustment) Order, 2008					
5 th December 2008	Amendment of the Energy and Water Utilities Regulatory Authority (Songas Limited) (Natural Gas Processing and Transportation Tariff Adjustment)					
2000	Order, 2008					
1 st May 2011	The Energy and Water Utilities Regulatory Authority (Songas Limited Natural					
	Gas Processing and Transportation Tariff Adjustment Mechanism)					
1 st April 2015	The Energy and Water Utilities Regulatory Authority (Tanzania Petroleum Development Corporation Natural Gas Processing and Transportation					
	Interim Tariff Adjustment Mechanism) Order, 2015					
5 th May 2017	The Petroleum (Natural Gas indicative Prices) (Special Strategic					
	Investments) Order, 2017					

Natural Gas Price and Savings

CUSTOMER	NATURAL GAS PRICE	PRICING PRINCIPLE(S) APPLIED
Power Generation	US \$0.69 to US \$ 5.14/ mmBtu	• Upstream investment costs are treated as sunk costs to reduce electricity tariffs (end-user affordability).

Industries	US \$11.3 to US\$12.9/GJ; and	 The price is escalated by the US Consumer Price Index (CPI) All charges are at cost 25% - 30% discount based on
	US \$11.9 to US\$13.6/MmBtu	alternative fuel (HFO) and consumed volume.
Compressed Natural Gas for Vehicles (CNG-V)	Gas supplier to CNG Filling Station: • US \$10.78/GJ; and • US \$11.37/MmBtu CNG Filling Station retail price: • Tsh. 1,550/kg	 50% discount based on alternative fuel (petrol)
Institutions and Households	Category 1: Hotels • US \$28.2/GJ; and • US \$29.75/ MmBtu Category 2: Households • US \$5.76/ GJ; and • US \$6/mmBtu Category 3: institutions • US \$5.76/GJ • US \$6/mmBtu	70% discount based on alternative fuel (LPG for hotels and Charcoal for households)

Compressed Natural (CNG) Stations

S/N	NAME	LOCATION	COD (YEAR)	STATUS
1	TPDC/PAET CNG Filling Station	Ubungo Maziwa - DSM	2009	Operational
2	Dangote Cement Limited Tanzania	Msijute, Mtwara	2022	Operational
3	Anric Gas Technology Tanzania	TAZARA, DSM	2023	Operational
4	TAQA Dalbit (T) Limited	Kipawa, DSM	2023	Operational
5	Dangote Cement Limited Tanzania	Mwanambaya, Mkuranga	2024	Operational
6	TP Company Limited	Ukuni Village, Bagamoyo District	-	WIP
7	TAQA Dalbit (T) Ltd	Mawasiliano area along Sam Nujoma Road, Ubungo	-	WIP
8	TPDC	Mawasiliano area along Sam Nujoma Road, Ubungo	-	WIP

9	Tembo Energy Limited	Sam	Nujoma	Road,	-	License	under
		Ubungo)			evaluatio	n

CNG-V Conversion Workshop

S/N.	GARAGE	LOCATION	REGION
1	UDSM & Triangle Energy (T) Ltd	UDSM	Dar es Salaam
2	Dangote Cement (own use)	Mtwara	Mtwara
3	Dar es Salaam Institute of Technology (DIT)	DIT	Dar es Salaam
4	Anric Gas Technology	Tazara	Dar es Salaam
5	BQ Contractors	Goba	Dar es Salaam
6	NK CNG Auto Limited	Mbezi Beach	Dar es Salaam
7	MOL CNG Limited and TEMESA	Keko	Dar es Salaam
8	Kleenair CNG	Kigamboni	Dar es Salaam
9	ENERGO WS	Mbezi	Dar es Salaam
10	EXOGAS GREEN SOL. LTD		Dar es Salaam

CNG Fuel System Certifiers

S/N	Name of Valid CNG Fuel System Certifier	Email Address	License Number	Location
1	Brayson Ezra Lema	brysn.lema47@gmail.com	CNG-FSI-0606	Dar es Salaam
2	Samwel Chacha	samwelchacha1002@gmail.com	CNG-FSI-0605	Dar es Salaam
3	Miraji Idrissa Nuru	mirajiidrissa123@mail.com	CNG-FSI-0592	Dar es Salaam
4	Hassan Rajabu	hmrajabu@gmail.com	CNG-FSI-0591	Dar es Salaam
5	John Enock Msyani	johnenock95@gmail.com	CNG-FSI-0590	Dar es Salaam
6	Paulo Fimbo	makoyepaul2000@gmail.com	CNG-FSI-0587	Dar es Salaam
7	Baraka Godfrey Majengo	barakagimajengo@gmail.com	CNG-FSI-0586	Dar es Salaam
8	Samson M. Saidow	samsonsaidow@gmail.com	U11076A	Dar es Salaam
9	Godwin Benjamin Kulinga	godwinkulinga@gmail.com	CNG-FSI-0585	Dar es Salaam

Natural Gas Customers

Power Plants

Sn	Name of Power Plant	Location
1	Songas	Dar es Salaam
2	KINYEREZI I	Dar es Salaam
3	KINYEREZI I EXTENSION	Dar es Salaam
4	KINYEREZI II	Dar es Salaam
5	UBUNGO I	Dar es Salaam
6	UBUNGO II	Dar es Salaam
7	UBUNGO IIIA	Dar es Salaam
8	UBUNGO IIIB	Dar es Salaam
9	TEGETA 45	Dar es Salaam
10	TANESCO - Mtwara Plant	Mtwara
11	Somanga Fungu	Lindi

12	TANESCO Hiari Mtwara Plant	Mtwara	

Industrial Customers

SN	Name of Customer	Location
1	Aluminium Africa (ALAF)	Dar es Salaam
2	Azam Bakeries Co Ltd	Dar es Salaam
3	Bautech Company Ltd 1	Dar es Salaam
4	Bora Industries	Dar es Salaam
5	East Coast Oil & Fats Ltd	Dar es Salaam
6	Iron and Steel Limited	Dar es Salaam
7	Kamal Steel Ltd	Dar es Salaam
8	Kioo Glass	Dar es Salaam
9	MM Integrated Steel (MM1)	Dar es Salaam
10	MM Integrated Steel -2	Dar es Salaam
11	MM Integrated Steel (MM3)	Dar es Salaam
12	Murzah Oil Mills Unit 1	Dar es Salaam
13	Murzah Oil Mills Unit 2	Dar es Salaam
14	Murzah Oil Unit Mills Unit 4	Dar es Salaam
15	Murzah Soap and Detergent Unit 3	Dar es Salaam
16	Namera Group of Industries	Dar es Salaam
17	Nampak (T) Ltd	Dar es Salaam
18	Nida Textile Mills Ltd	Dar es Salaam
19	OK Plast Ltd	Dar es Salaam
20	SBC Tanzania - Pepsi	Dar es Salaam
21	Serengeti Breweries Ltd	Dar es Salaam
22	SilAfrica Tanzania T Ltd	Dar es Salaam
23	Steel Masters Ltd	Dar es Salaam
24	Tanpack Tissues Ltd	Dar es Salaam
25	Tanzania Breweries Ltd (TBL)	Dar es Salaam
26	Tanzania Cigarette Company (TCC)	Dar es Salaam
27	Tanzania Cuttleries Manufacturer Ltd	Dar es Salaam
28	Tanzania-Chinese Textile (TCFT)	Dar es Salaam
29	VOT Tanzania	Dar es Salaam
30	Gaia Eco Solution	Dar es Salaam
31	Said S. Bakhresa & Co Ltd (SSB)	Dar es Salaam
32	Soap & Allied Industries L	Dar es Salaam
33	A-one	Dar es Salaam
34	Royal Soap & Detergent Industry Ltd	Dar es Salaam
35	Jumbo Packaging	Dar es Salaam
36	Mikoani Edible oil	Dar es Salaam
37	Tanzania Pasta Industries	Dar es Salaam
38	Tanga Pharmaceutical	Dar es Salaam

39	Quaim Steel Industry	Dar es Salaam
40	Tanzania Portland Cement Limited (AG)	Dar es Salaam
41	Raddy Fiber Manufacturing	Mkuranga
42	Dangote Cement factory	Mtwara
43	Goodwill ceramic factory	Mkuranga
44	Lodhia steel Ltd	Mkuranga
45	Knauf Gypsum factory	Mkuranga
46	Coca-Cola	Dar es Salaam
47	MM Integrated Steel Mills (MMI 2)	Dar es Salaam
48	MM Integrated Steel Mills (MMI 3)	Dar es Salaam
49	Sapphire Float Glass	Mkuranga
50	Balochistan	Mkuranga
51	LN FUTURE	Mkuranga
52	Chemicortex	Dar es Salaam

Commercial Customers

Sn	Name of customer	Location
1	TANRUSS Investments Limited (Serena Hotel)	Dar es Salaam
2	Tanzania Prisons Services (Keko Prison)	Dar es Salaam
3	Lilungu Prison Mtwara	Mtwara
4	Mtwara Teachers college	Mtwara
5	Mtwara Technical Secondary School	Mtwara
6	Mtwara Teachers Technical College	Dar es Salaam
7	UDSM Cafeteria 1	Dar es Salaam

Households Customers

Sn	Gas Supply Region	Area/Location	Number of Households
1	Mtwara	Bandari	125
2	Mtwara	Kiyangu, Lilungu, Mtwara Tech	300
3	Dar es Salaam	Mikocheni	70
4	Dar es Salaam	Mikocheni, Mlalakua and UDSM	140
5	Lindi	Mnazimmoja	209
6	Dar es Salaam	UDSM	100
		Sinza	226
		Kurasini	344
		TOTAL	1,514

CNG Filling Station

Sn	Name of Customer	Location
----	------------------	----------

1	Panafrican Energy Filling Station - Ubungo	Dar es Salaam
2	ANRIC Gas Technology Filling Station - TAZARA	Dar es Salaam
3	Dangote Filling Station (Own Use)	Mtwara
4	Dangote Filling Station (Own Use)	Mkuranga
5	TAQA Dalbit Filling Station	Dar es Salaam

REGULATORY TOOLS

1.	The National Energy Policy, 2015
2.	The Petroleum Act, 20215
3.	The Petroleum (Natural Gas Pricing) Regulations, 2016
4.	The Petroleum (Natural Gas Pricing) Regulations, 2020

WATER AND SANITATION SECTOR

1930s	Water supply was confined to urban areas and farming settlements owned by settlers.
1949	The Waterworks Act was enacted to provide for and regulate water supply to the public. The Act provided for, water supply, management of water works, and protection of water resources.
1959	The intake of the Upper Ruvu plant with a capacity of 18,000 m3/day located 65 km west of Dar es Salaam City was commissioned and later expanded to 196,000 m3/day.
1961	The government put in place a policy of 'free' water for all and took responsibility from the local government for all construction costs for rural water schemes.
1965	The government began to finance all water supply investments and in 1970 began as well to finance operation and maintenance costs. From 1970 rural water supply systems provided water at no charge to users.
1971	The government proclaimed a 20-year (1971-1991) Rural Water Supply Program that aimed at providing access to adequate, safe, dependable water supply within a walking distance of 400 meters from each household.
1973	The government introduced a 'latrinisation' campaign under a program called "Mtu ni Afya" aimed at ensuring each household had a latrine. The campaign was given added impetus following a cholera outbreak in 1977. Later, latrine coverage increased from 20-50 per cent between 1973 and 1980.
1974	The Water Utilization (Control and Regulation) Act was passed to create a system of water rights, establishment of Water Advisory Boards, and appointment of Water officers.
1981	The National Urban Water Authority Act was enacted to establish the National Urban Water Authority (NUWA) responsible for developing and managing urban water supply on Tanzania's Mainland. In 2001 it was revised to the Dar es Salaam Water Supply and Sewerage Authority Act serving Dar es Salaam city and parts of the Coast region

1991	The National Water Policy was promulgated to address the shortcomings of the Rural Water Supply Program of 1971. The principal goal of the policy was to provide clean and safe water to the population within 400 meters of their households.
1997	The Dar es Salaam Water and Sewerage Authority (DAWASA) was created to develop and operate the Dar es Salaam city's water infrastructure and tariffs were introduced for all users.
2002	The National Water Policy of 1991 was revised to promote decentralization and integration into water resources management based on river and lake basin boundaries. The policy laid a foundation for sustainable development and management of water resources under the changing roles of the Government from service provider to that of coordination, policy and guidelines formulation and regulation.
2002	The National Water Sector Development Strategy was formulated to have a coherent, holistic, and integrated strategy to implement the National Water Policy. It pronounced the institutional and legislative changes necessary to implement the National Water Policy of 2002.
2003	The City Water Services Ltd was awarded a lease contract to provide water supply and sewerage services in Dar es Salaam City for ten years. in 2005, the contract was terminated for non-performance improvement.
2006	The Water Sector Development Programme (WSDP) which spans from 2006 to 2025 launched. The programme aimed to eliminate overlaps and duplication of efforts in water resources management and development and the provision of water supply and sanitation services.
2009	The Water Resources Management Act was enacted to provide for the institutional and legal framework for sustainable management and development of water resources and repeal the Water Utilization (Control and Regulation) Act.
2009	The Water Supply and Sanitation Act was passed to provide for sustainable management, adequate operation, and transparent regulation of water supply and sanitation services to give effect to the National Water Policy, 2002; to provide for the establishment of water supply and sanitation authorities as well as community-owned water supply organizations; to provide for appointment of service providers, repeal of the Waterworks Act and to provide for related matters.
2019	The Water Supply and Sanitation Act was passed to provide for sustainable management, adequate operation, and transparent regulation of water supply and sanitation services; provide for the establishment of water supply and sanitation authorities, Rural Water agencies, National Water Fund, and community-based water supply organizations; provide for the appointment of service providers, repeal of the Water Supply and Sanitation Act, 2009 and the Dar es Salaam Water and Sewerage Authority Act, 2001.

TECHNICAL REGULATION

1.	Tanzania total area	947,300 km ²
2.	Area covered by inland water bodies (Lake Victoria,	61,500 km ²
	Lake Tanganyika, Lake Nyasa, Lake Rukwa, Lake	

56

	Eyasi and other water bodies)		
3.	WSSAs' installed Water Production	870 million m ³ /year	
4.	Water demand in WSSAs' service a	820 million m ³ /year	
5.	Water demand (2035)	80 billion cubic metres	
6.	No. of WSSAs (June 2024)		82
7.	No. of CBWSOs (2024)		2,488
8.	WSSAs with water treatment faciliti	es (%)	94%
9.	WSSAs Non-Revenue Water (June	2024)	37.2%
10.	WSSAs Metering Ratio (June 2024)		92.8%
11.	WSSAs Water quality compliance	E. coli	84%
	(June 2024)	Turbidity	86%
12.	Access to Water Supply Services	Urban	82%
	(as of June 2024)	Rural	77%
13.	Number of Water connections	Total water	1,532,362
	(June 2024)	connections	
	, , , , , , , , , , , , , , , , , , ,	Active water	1,432,640
		connection	
		Total domestic water	1,444,874
		connections	
		Public water kiosk	12,261
14.	Population distribution – Mainland	Urban	34%
	(2022)	Rural	66%
15.	Water sources		Rivers, lakes, wetlands,
			springs, reservoirs, and
			groundwater aquifers
16.	Water basins		Pangani, Wami/Ruvu,
			Rufiji, Ruvuma and
			Southern Coast, Lake
			Nyasa, Lake Rukwa, Lake
			Tanganyika, internal
			Drainage and Lake
17.	Number of Water use permits (2021)	Victoria 10,904
17.	Number of Water dams (2022))	776
10.	Number of Charcoal dams (2022)	1,384	
20.	Number of Cattle troughs (2022)	458	
20.	Number of Boreholes for livestock (2	103	
21.	Sewer Network Length in km (June	1,503	
23.	Regional Headquarters with sewera	· · ·	11
23.	2024)	ye systems (June	11
24.	Regional Headquarters without sew	erage systems (June	15
	2024)		

Licence Classes (September 2024)

Licence Class	Number of WSSAs	Description
---------------	--------------------	-------------

I	2	A licence is issued by EWURA to a licensee who has the technical and managerial capability to operate a licensed facility and recover all costs of operation.
II	8	A licence is issued by EWURA to a licensee who has the technical and managerial capability to operate a licensed facility and recovers all costs of operation except part of its investment costs.
111	61	A licence issued by EWURA to a licensee who still gets financial, managerial, and technical support from the Government and partially recovers its operational costs.
Provisional	11	A licence issued to a declared water authority that has not qualified for a Class I, II, or III license (with initial facilities and human resources for the provision of services).

National Programmes

S/N	Project Name	Region	Cost	Progress
1.	Arusha Sustainable Urban Water and Sanitation Delivery Project	Arusha	USD 233 Million	100%
2.	Kiwira Water Supply Project	Mbeya	TZS 99.6 billion	5%
3.	Construction of Farkwa Dam	Dodoma	USD 128 million	Design Review
4.	LVWATSAN – Mwanza Project (Butimba)	Mwanza	TZS 69.3 billion	100%
5.	Construction of Kidunda Dam	DSM	TZS 329 billion	9%
6.	Rufiji Water Supply Project	DSM/Pw ani	TZS 2.0 trillion	Design stage
7.	28 Towns Water Supply Project	Various	TZS 1.48 trillion	16%
8.	Simiyu Climate Change Resilient Project	Simiyu	Euro 171 million	2%
9.	Lake Victoria – Dodoma Water Supply Project	Dodoma	TZS 1.3 trillion	Pre-feasibility study
10.	National Water Grid	Various	Not yet established	Pre-feasibility study

Performance of WSSAs in Summary by September 2024

S/N	Indicator/Data	Unit	Performance	Service Level Benchmark
1.	Installed Production Capacity	(Million m3/year)	870	-
2.	Water Production	(Million m3/year)	400	-

58

3.	Water Connections	Number	1,532,362	-
4.	Sewerage Connections	Number	56,899	
5.	Water Service Coverage			
	The population living in an area with a water network	%	82	-
	The population directly served with water	%	64	100
6.	Average Hours of Service	hours	14	24
7.	Sewerage coverage among 11 WSSAs that provide sewered sanitation services	%	10.7	100
8.	Water Quality Compliance			
	E. coli	%	84	100
	Turbidity	%	86	100
9.	Percentage of complaints resolved	%	95.4	100
10.	Metering Ratio	%	92.8	100
11.	Non-Revenue Water	%	37.2	<20
12.	Revenue Collection Efficiency	%	91	>95
13.	Average water tariff	TZS per cubic meter	1382	-
14.	Working Ratio	Ratio	1.3	<0.67
15.	Operating Ratio	Ratio	2.0	<0.8
16.	No. of employees per 1000 connections	Ratio	3.8	<5
17.	Effluent Quality Compliance	e:		
	COD	%	50	100
	BOD	%	58	100

With Conventional Water Treatment Plants	With	Disinfe	ection Units only		nout htment lities
1. Arusha	1. Bariadi	29.	Mpanda	1.	Namanyere
2. Babati	2. Chunya	30.	Mpwapwa	2.	Songe
3. Biharamulo	3. Dodoma	31.	MugangoKiabakari	3.	Tunduma
4. Bukoba	4. HTM	32.	Namtumbo	4.	Tunduru
5. Bunda	5. Ifakara	33.	Ngara		
6. DAWASA	6. Itumba-	34.	Njombe		
7. Geita	Isongole	35.	Rombo		
8. Igunga	7. Karatu	36.	Ruangwa		
9. KASHWASA	8. Kasulu	37.	Rujewa		
10. Kibondo	9. Kibaya	38.	Same-		
11. Maswa	10. Kigoma		Mwanga		
12. Mbeya	11. Kilwa-	39.	Singida		
13. Morogoro	Masoko	40.	Tukuyu		
14. Mtwara	12. Kiomboi	41.	Turiani		
15. Musoma	13. Kondoa	42.	Ushirombo		
16. Mwanhuzi	14. Kyela-	43.	Utete		
17. Mwanza	Kasumulu	44.	Vwawa-		
18. Nzega	15. Lindi	45.	Mlowo		
19. Orkesumet	16. Liwale	46.	Wanging'om be		
20. Sengerema	17. Loliondo 18. Ludewa				
21. Shinyanga	19. Lushoto				
22. Songea	20. Mafinga				
23. Sumbawanga 24. Tabora	21. Makambako				
25. Tanga	22. Makete				
26. Iringa	23. Makonde				
27. Busega	24. MANAWASA				
28. Chato	25. Manyoni				
29. Gairo	26. Mbinga				
30. *Kahama	27. Mbulu				
31. *Kishapu	28. Moshi				
32. *Maganzo					

Water Treatment Facilities (September 2024)

* WSSA receives treated water from KASHWASA

Water Sources and Abstraction (FY 2023/24)

Source	Abstraction (Million m ³)	% contribution to total abstraction
Boreholes	84.18	20%
Springs	49.10	12%
Dams	31.09	7%
Lakes	80.33	19%
Rivers	180.95	42%
TOTAL	435.53	100%

Water Network and Storage Capacity (September 2024)

INDICATOR	PERFORMANCE
Total Length of Water Network (km)>1.5"	35,063.5
Storage Capacity (m ³)	818,031

Wastewater Treatment Facilities (September 2024)

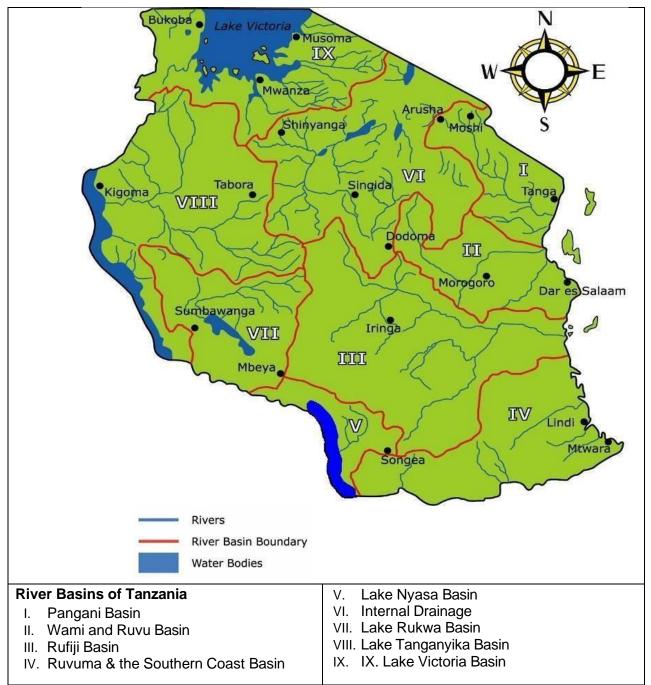
With Sewer Network and Wastewater Treatment Facilities	With a Sewer Network but no Wastewater Treatment Facilities	Without a Sewer Network but have Faecal Sludge Treatment Facilities	With Ongoing Construction of Wastewater Treatment Facilities	With Land for Construction of Wastewater Treatment Facilities
Arusha, Dodoma, Moshi, Morogoro, Mwanza, Iringa, Songea, Mbeya, Tabora and DAWASA	Tanga	Sumbawanga, Bukoba, Geita, Kigoma, Musoma, Kahama, Shinyanga, Lindi Nzega, Sengerema, and Busega	Tabora, Tanga, Singida, Babati, Njombe, Bunda Chato, Igunga, and Korogwe	DAWASA, Gairo, Mbinga, Namanyere, Ludewa, Itumba- Isongole, Kondoa, Mafinga, Mpwapwa, and Utete

ECONOMIC REGULATION

Before 1970	Water services in rural areas were provided by Water Development and Irrigation Department (WD & ID)
1970	After the establishment of the Ministry of Water and Electricity Power, the water services in rural areas were provided by Regional and District Water Engineers. After the Arusha Declaration, water services were declared to be provided for free in rural areas.
1991	To involve the public in the improvement of water services, the Government established the Committee and Water Funds and started to contribute to the water service costs.
1992	Urban Water and Sewerage Authorities were established.
1997	Amended Waterworks Ordinance Cap 281, 1956 to Act No.8 of 1997.

2006	Energy and Water Utilities Regulatory Authority (EWURA) was established to perform among other things, to regulate rates and charges of services provided by the regulated utilities of energy (electricity, natural gas and petroleum) and water sectors.
2009	EWURA produced Tariff Application Guidelines of 2009 read in conjunction with EWURA (Rates and Charges Applications) Rules, 2009
2011	EWURA on its own motion, issued a Small Water Utilities indexation Tariff Order to 89 district water services authorities.
2006 - to date	EWURA has continued to issue water tariff orders to urban water authorities and monitor the implementation of tariff order conditions

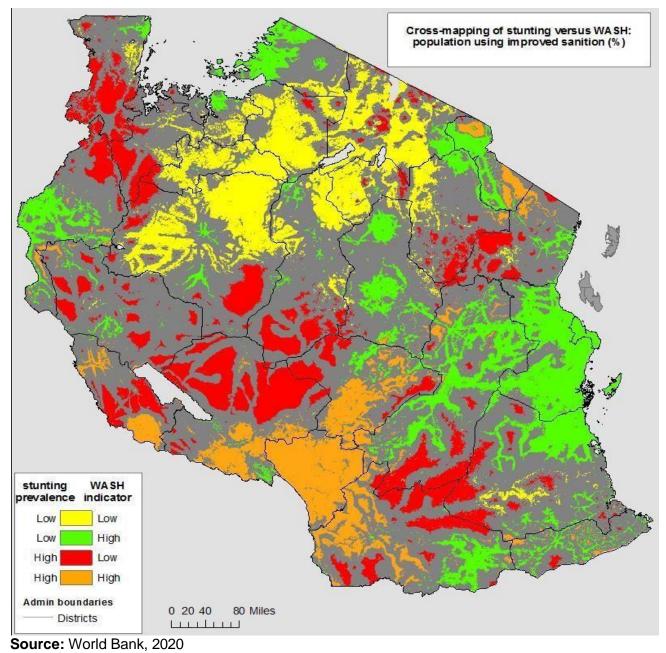
WATER TARIFFS


Water supply and sanitation authorities operate as monopolies, thus water tariffs differ among them.

S/N	UTILITY	APPROVED AVERAGE WATER TARIFF				
		2020/21	2021/22	2022/23	2023/24	2024/25
1	Arusha	1,989	1,759	2,122	2,122	2,126
2	Dodoma	1,397	1,397	1,397	1,628	1,774
3	Iringa	2,100	2,100	2,100	2,100	2,100
4	Kahama	2,308	2,308	2,192	2,308	2,308
5	Mbeya	1,268	1,210	1,366	1,531	1,704
6	Babati	1,863	1,825	2,481	2,529	2,573
7	DAWASA	1,663	1,663	1,663	1,663	1,663
8	Morogoro	1,777	1,766	1,766	1,766	1,766
9	Moshi	1,000	900	1,068	1,075	1,119
10	Mtwara	1,480	1,480	2,070	2,198	2,198
11	Musoma	1,230	1,360	1,360	1,360	1,360
12	Mwanza	1,534	1,709	1,709	1,709	1,709
13	Shinyanga	2,014	2,014	2,014	2,014	2,014
14	Songea	1,226	1,178	1,641	1,683	1,732
15	Tabora	1,945	1,945	1,945	1,945	1,945
16	Tanga	1,983	1,983	1,983	1,983	1,983
17	Bukoba	2,206	1,888	1,888	1,888	1,888
18	Kigoma	1,400	1,400	1,400	1,400	1,400
19	Singida	1,741	1,723	1,723	1,723	1,723
20	Sumbawanga	1,045	937	1,146	1,596	1,627
21	Lindi	1,900	1,800	1,797	2,203	2,249
22	Bariadi	690	690	756	1,281	1,392
23	Geita	1,552	1,552	1,552	1,552	1,552
24	Mpanda	1,236	1,359	1,359	1,359	1,359

25	Njombe	1,616	1,616	1,616	1,616	1,616
26	Vwawa Mlowo	1,010	1,010	1,010	1,010	1,010
20	HTM	3,549	3,549	3,549	3,549	3,549
28	KASHWASA	966	966	966	966	966
29	Makonde	1,300	1,300	1,300	2,131	2,180
30	Maswa	2,049	2,049	2,049	2,049	2,049
31	Mugango Kiabakari	1,520	1,570	1,570	1,570	1,570
32	Wanging'ombe	1,698	1,698	1,698	1,698	1,698
33	MANAWASA	1,557	1,557	1,557	1,557	1,557
34	Biharamulo	1300	1400	1400	1400	1400
35	Bunda	2,109	2,109	2,109	2,109	2,109
36	Busega	,		1,250	1,250	1,250
37	Chato	1,500	1,500	1,500	1,500	1,500
38	Chunya	1,500	1,500	1,500	1,500	1,500
39	Gairo	300	300	300	300	300
40	Ifakara	1,133	1,133	1,133	1,133	1,133
41	Igunga	1,508	1,605	1,605	1,605	1,605
42	Karatu	1,300	1,300	1,300	1,300	1,300
43	Kasulu	300	300	300	300	300
44	Kibaya	1,977	1,977	1,977	1,977	1,977
45	Kibondo	850	850	850	850	850
46	Kilindoni	1,141	1,221	1,221	1,221	1,221
47	Kilwa Masoko	1,050	1,050	1,050	1,050	1,050
48	Kiomboi	1,050	1,050	1,050	1,050	1,050
49	Kishapu	1,696	1,696	1,696	1,696	1,696
50	Kondoa	1,600	1,600	1,600	1,600	1,600
51	Korogwe	1,174	1,174	1,174	1,174	1,174
52	Kyela- Kasumulu			450	450	450
53	Liwale	832	832	832	832	832
54	Loliondo	2,500	2,500	2,500	2,100	2,200
55	Ludewa	540	540	540	540	540
56	Lushoto	395	395	1,100	1,200	1,240
57	Mafinga	940	940	940	1,190	1,250
58	Mahenge	395	395	395	395	395
59	Makete	1,020	1,050	1,050	1,050	1,050
60	Manyoni	1,146	1,146	1,146	1,146	1,146
61	Mbinga	670	670	670	670	670
62	Mbulu	542	542	1,266	1,428	1,447
63	Mombo	497	497	497	1,000	1,100
64	Mpwapwa	1,061	1,061	1,448	1,448	1,448
65	Mwanhuzi	1,000	1,000	1,000	1,000	1,000
66	Namanyere	720	720	720	720	720

67	Namtumbo	1,015	1,105	1,105	1,550	1,550
68	Ngara	1,485	1,485	1,485	1,485	1,485
69	Nzega	1,450	1,480	1,480	1,480	1,480
70	Orkesumet	300	300	2,500	3,250	3,440
71	Rombo	900	900	900	900	900
72	Ruangwa	1,389	1,389	1,389	1,389	1,389
73	Rujewa	540	540	540	540	540
74	Same-Mwanga			1,320	1,320	1,320
75	Sengerema	1,360	1,486	1,486	1,486	1,486
76	Songe	1,691	1,691	1,691	1,691	1,691
77	Tukuyu	300	300	300	300	300
78	Tunduru	1,028	1,248	1,248	1,248	1,248
79	Ushirombo	1,500	1,500	1,500	1,500	1,500
80	Utete	1,050	1,050	1,050	1,050	1,050
81	Itumba Isongole	300	300	300	300	300
82	Maganzo	1,900	1,900	1,900	1,900	1,900
83	Makambako	1,446	1,633	1,633	1,633	1,633
84	Tunduma	525	525	525	525	525
85	Turiani	937	937	937	937	937
	•	•	•	•	•	


Main Water Resources Basins in Tanzania

Source: Tarimo et al. 2016

65

Sanitation Level in Mainland Tanzania

REGULATORY TOOLS

1.	The Water Supply and Sanitation Act (Licensing and Quality of Services) Rules, 2020
2.	The Water Supply and Sanitation Act (Licensing Fees) Rules, 2020;
3.	The Water Supply and Sanitation Act (Water Tariff and Rate Setting) Rules, 2020;
4.	Water Supply and Sanitation Act (Private and Community Borehole Water Services)
	Rules, 2023
5.	Water Supply and Sanitation Act (Water Tanker Services) Rules, 2023;

6. The Energy And Water Utilities Regulatory Authority (Consumer Complaints Settlement Procedure) Rules, 2020

Energy and Water Utilities Regulatory Authority

EWURA House, 3 EWURA Street, 41104 Tambukareli, P. O. Box 2857 DODOMA, TANZANIA

Tel: +255 262329002

Fax: +255 262329005

Email: info@ EWURA.go.tz

Website: www. EWURA.go.tz